Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

T0-3 Formal Specification: Zeckendorf Constraint Emergence

1. Type Definitions

-- Binary string type
type BinaryString = [Bit] where Bit ∈ {0, 1}
type Length = ℕ

-- Constraint specification
type Constraint = BinaryString → Bool

-- Encoding scheme with bijection requirement
type BijectiveEncoding = {
  weights: [ℕ],
  constraint: Constraint,
  encode: ℕ → BinaryString,
  decode: BinaryString → ℕ,
  bijective: ∀n. decode(encode(n)) = n ∧ 
             ∀s. constraint(s) → encode(decode(s)) = s
}

2. Correct Fibonacci Definition

2.1 Standard Fibonacci Sequence

fibonacci : ℕ → ℕ
fibonacci(1) = 1
fibonacci(2) = 2
fibonacci(n) = fibonacci(n-1) + fibonacci(n-2) for n > 2

-- Sequence: F₁=1, F₂=2, F₃=3, F₄=5, F₅=8, F₆=13, F₇=21, ...

2.2 Counting Formula

count_no11_strings : ℕ → ℕ
count_no11_strings(0) = 1  -- empty string
count_no11_strings(1) = 2  -- "0", "1"
count_no11_strings(n) = count_no11_strings(n-1) + count_no11_strings(n-2)

-- THEOREM: count_no11_strings(n) = fibonacci(n+1)

3. Uniqueness vs Density

3.1 Bijection Requirement

is_bijective : Encoding → Bool
is_bijective(E) = 
  (∀n ∈ ℕ. ∃!s. E.constraint(s) ∧ E.decode(s) = n) ∧
  (∀s. E.constraint(s) → ∃!n. E.decode(s) = n)

3.2 Information Density

information_density : Constraint × Length → ℝ
information_density(Γ, n) = log₂(count_valid(Γ, n)) / n

where count_valid(Γ, n) = |{s : |s| = n ∧ Γ(s)}|

3.3 Density Comparison

-- Verified densities for different constraints:
density_no_constraint : ℕ → ℝ
density_no_constraint(n) = 1.0  -- 2ⁿ strings

density_no111 : ℕ → ℝ  
density_no111(n) ≈ 0.755  -- ~1.465ⁿ strings

density_no11 : ℕ → ℝ
density_no11(n) → log₂(φ) ≈ 0.694  -- fibonacci(n+1) strings

-- FACT: density_no11 < density_no111 < density_no_constraint

4. Constraint Specifications

4.1 No-11 Constraint

no_consecutive_ones : Constraint
no_consecutive_ones(s) = ∀i ∈ [0..|s|-2]. ¬(s[i] = 1 ∧ s[i+1] = 1)

4.2 Alternative Constraints (Non-Bijective)

-- No three consecutive ones (NOT BIJECTIVE)
no_111 : Constraint
no_111(s) = ∀i ∈ [0..|s|-3]. ¬(s[i] = 1 ∧ s[i+1] = 1 ∧ s[i+2] = 1)

-- Allows "11" patterns which break uniqueness

5. Zeckendorf Encoding

5.1 Decoder with Correct Indexing

zeckendorf_decode : BinaryString → ℕ
zeckendorf_decode([]) = 0
zeckendorf_decode(s) = Σᵢ s[i] × fibonacci(i+1)
                       where i ∈ [0..|s|-1]
-- Uses F₁, F₂, F₃, ... (starts from F₁)

5.2 Encoder Algorithm

zeckendorf_encode : ℕ → BinaryString
zeckendorf_encode(0) = []
zeckendorf_encode(n) = 
  let fibs = [fibonacci(i) | i <- [1..], fibonacci(i) ≤ n]
      result = greedy_select(n, reverse(fibs))
  in ensure_no_consecutive_ones(result)

greedy_select : ℕ × [ℕ] → BinaryString
-- Greedy algorithm selecting largest Fibonacci numbers
-- Ensures no consecutive selections

6. Key Theorems (Corrected)

6.1 Uniqueness Theorem

theorem_zeckendorf_uniqueness:
  ∀n : ℕ. ∃!s : BinaryString.
    no_consecutive_ones(s) ∧ 
    zeckendorf_decode(s) = n

proof_sketch:
  - Existence: by greedy algorithm
  - Uniqueness: by Fibonacci growth property

6.2 No-111 Lacks Uniqueness

theorem_no111_not_bijective:
  ∃n : ℕ. ∃s₁,s₂ : BinaryString.
    s₁ ≠ s₂ ∧
    no_111(s₁) ∧ no_111(s₂) ∧
    decode_fibonacci(s₁) = decode_fibonacci(s₂)

proof:
  -- "11" patterns create redundancy via F_i + F_{i+1} = F_{i+2}
  -- Example: different representations for same value

6.3 Counting Formula Correctness

theorem_fibonacci_counting:
  ∀n : ℕ. count_no11_strings(n) = fibonacci(n+1)

proof:
  by induction on n
  base: n=0 → 1 = fibonacci(1) ✓
        n=1 → 2 = fibonacci(2) ✓
  step: count(n) = count(n-1) + count(n-2)
                 = fibonacci(n) + fibonacci(n-1)
                 = fibonacci(n+1) ✓

7. Trade-off Analysis

7.1 Uniqueness-Density Trade-off

constraint_properties : Constraint → (Bool, ℝ)
constraint_properties(Γ) = (is_bijective(Γ), average_density(Γ))

-- No-11: (true, 0.694) - bijective but lower density
-- No-111: (false, 0.755) - higher density but not bijective
-- None: (false, 1.0) - maximum density but not bijective

7.2 Optimality Criterion

optimal_for_uniqueness : Constraint
optimal_for_uniqueness = argmax_{Γ} density(Γ)
                         subject to is_bijective(Γ)
                         
-- RESULT: optimal_for_uniqueness = no_consecutive_ones

8. Verification Algorithms

8.1 Uniqueness Checker

verify_uniqueness : Constraint × Length → Bool
verify_uniqueness(Γ, n) =
  let valid = [s | s <- all_strings(n), Γ(s)]
      values = map decode valid
  in length(values) = length(nub(values))  -- no duplicates

8.2 Bijection Verifier

verify_bijection : Encoding × ℕ → Bool
verify_bijection(E, max_n) =
  ∀n ∈ [0..max_n].
    E.decode(E.encode(n)) = n ∧
    E.constraint(E.encode(n))

8.3 Density Calculator

compute_density : Constraint → Length → ℝ
compute_density(Γ, n) =
  let valid_count = count_valid(Γ, n)
  in log₂(valid_count) / n

-- For no-11: valid_count = fibonacci(n+1)

9. Computational Complexity

-- Zeckendorf encoding complexity
encode_complexity : ℕ → Complexity
encode_complexity(n) = O(log n)

-- Uniqueness verification
uniqueness_check : ℕ → Complexity
uniqueness_check(n) = O(fibonacci(n+1)) = O(φⁿ)

-- Density computation
density_computation : ℕ → Complexity
density_computation(n) = O(n)  -- via recursion

10. Formal Properties

10.1 Complete Coverage

property_complete_coverage:
  ∀n : ℕ. ∃s : BinaryString.
    no_consecutive_ones(s) ∧
    zeckendorf_decode(s) = n

10.2 Unique Representation

property_unique_representation:
  ∀n : ℕ. ∀s₁,s₂ : BinaryString.
    no_consecutive_ones(s₁) ∧
    no_consecutive_ones(s₂) ∧
    zeckendorf_decode(s₁) = zeckendorf_decode(s₂)
    → s₁ = s₂

10.3 No Other Bijective Constraint

property_uniqueness_of_no11:
  ∀Γ : Constraint.
    (Γ ≠ no_consecutive_ones ∧ is_bijective_with_fibonacci(Γ))
    → false

11. Machine-Verifiable Assertions

-- Correct counting formula
assert_counting:
  assert(∀n ≤ 20. count_no11_strings(n) = fibonacci(n+1))

-- Zeckendorf uniqueness
assert_uniqueness:
  assert(∀n ≤ 1000. unique_representation(n))

-- Density calculation
assert_density:
  assert(|density_no11(20) - log₂(φ)| < 0.01)

-- No-111 lacks uniqueness
assert_no111_redundancy:
  assert(∃n. multiple_representations_no111(n))

-- Trade-off verification
assert_tradeoff:
  assert(density_no11 < density_no111 ∧
         is_bijective(no11) ∧
         ¬is_bijective(no111))

12. Test Generation

-- Generate uniqueness test cases
test_uniqueness : Length → [(ℕ, BinaryString)]
test_uniqueness(n) = 
  [(i, zeckendorf_encode(i)) | i <- [0..fibonacci(n+1)-1]]

-- Generate non-uniqueness examples for no-111
test_no111_redundancy : Length → [(BinaryString, BinaryString, ℕ)]
test_no111_redundancy(n) =
  find_redundant_pairs(no_111, n)

-- Verify counting formula
test_counting : Length → [(ℕ, ℕ, ℕ)]
test_counting(max_n) =
  [(n, count_no11_strings(n), fibonacci(n+1)) | n <- [0..max_n]]

This formal specification correctly represents:

  1. The actual Fibonacci sequence (F₁=1, F₂=1, ...)
  2. The correct counting formula (n-bit strings = F_{n+1})
  3. The true nature of the constraint (uniqueness, not density maximization)
  4. The fundamental trade-off between uniqueness and density