Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

T0-4: Binary Encoding Completeness Theory - Formal Specification

1. Formal System Definition

1.1 Language L₄

Alphabet: Σ = {0, 1}
Variables: I, Z, n, s, z, φ
Constants: F₁=1, F₂=2, F₃=3, F₄=5, F₅=8, ...
Operations: +, ·, ⊕, φ, φ⁻¹
Relations: =, ≤, ∈, ⊂, →

1.2 Axioms

Axiom A₀ (Entropy): ∀S[SelfRef(S) ∧ Complete(S) → EntropyIncrease(S)]
Axiom A₁ (Binary): StateSpace = {0, 1}
Axiom A₂ (Fibonacci): Capacity(n) = Fₙ where Fₙ = Fₙ₋₁ + Fₙ₋₂, F₁=1, F₂=2
Axiom A₃ (No-11): ∀z ∈ Z[Valid(z) ↔ ¬Contains(z, "11")]

1.3 Type System

Type Info = Distinguishable × Finite
Type Zeck = Binary × No11
Type Encoding = Info → Zeck
Type Process = Sequence(Info × Transition)

2. Core Definitions

2.1 Information Space

Definition D₁ (Information Space):
I := {s : Type(s) = Info ∧ Distinguishable(s)}

Definition D₂ (Zeckendorf Space):
Z := {z ∈ {0,1}* : ∀i[z[i]=1 → z[i+1]≠1]}

Definition D₃ (Encoding Function):
φ: I → Z
φ(s) := BinaryString(FibonacciSum(InfoContent(s)))

2.2 Fibonacci Representation

Definition D₄ (Fibonacci Sequence):
F: ℕ → ℕ
F(1) = 1
F(2) = 2
F(n) = F(n-1) + F(n-2) for n > 2

Definition D₅ (Zeckendorf Decomposition):
Zeck(n) := {iₖ, iₖ₋₁, ..., i₁} where:
  n = Σⱼ F(iⱼ)
  ∀j,k[j≠k → |iⱼ - iₖ| > 1]
  Unique({iₖ, ..., i₁})

2.3 Binary Encoding

Definition D₆ (Binary Zeckendorf):
BinZeck(n) := z where:
  Length(z) = max(Zeck(n))
  z[i] = 1 ↔ (i+1) ∈ Zeck(n)
  z[i] = 0 ↔ (i+1) ∉ Zeck(n)

3. Fundamental Theorems

3.1 Existence and Uniqueness

Theorem T₁ (Universal Representation):
∀s ∈ I ∃!z ∈ Z[φ(s) = z]

Proof:
1. ∀s ∈ I → ∃n ∈ ℕ[InfoContent(s) = n]     [by A₁, A₂]
2. ∀n ∈ ℕ → ∃!{iₖ}[n = Σ F(iₖ)]           [Zeckendorf's Theorem]
3. ∃!{iₖ} → ∃!z[BinZeck(n) = z]           [by D₆]
4. ∃!z → z ∈ Z                             [by A₃, construction]
5. ∴ ∀s ∈ I ∃!z ∈ Z[φ(s) = z]             □

3.2 Completeness

Theorem T₂ (Encoding Completeness):
∀z ∈ Z ∃s ∈ I[φ(s) = z]

Proof:
1. ∀z ∈ Z → ∃n[DecodeZeck(z) = n]         [by D₅ inverse]
2. ∀n ∈ ℕ → ∃s[InfoContent(s) = n]        [by I definition]
3. ∃s → φ(s) = z                          [by φ definition]
4. ∴ ∀z ∈ Z ∃s ∈ I[φ(s) = z]              □

3.3 Bijectivity

Theorem T₃ (Bijection):
φ: I → Z is bijective

Proof:
1. Injective: ∀s₁,s₂[φ(s₁)=φ(s₂) → s₁=s₂]
   - φ(s₁) = φ(s₂)
   - BinZeck(n₁) = BinZeck(n₂)             [by D₆]
   - n₁ = n₂                               [by uniqueness]
   - s₁ = s₂                               [by Info uniqueness]
   
2. Surjective: ∀z ∈ Z ∃s ∈ I[φ(s) = z]   [by T₂]

3. ∴ φ is bijective                        □

4. Density and Approximation

4.1 Density Calculation

Theorem T₄ (Encoding Density):
lim_{n→∞} |Zₙ|/2ⁿ = φ⁻ⁿ⁺¹/√5 where φ = (1+√5)/2

Proof:
1. |Zₙ| = Fₙ₊₂                             [combinatorial identity]
2. Fₙ ~ φⁿ/√5                              [Binet's formula]
3. |Zₙ|/2ⁿ ~ φⁿ⁺²/(√5·2ⁿ)
4. = (φ/2)ⁿ · φ²/√5
5. lim_{n→∞} (φ/2)ⁿ · φ²/√5 = φ⁻ⁿ⁺¹/√5    □

4.2 Approximation Theorem

Theorem T₅ (Infinite Approximation):
∀s_∞ ∈ I_infinite ∀ε>0 ∃n ∃sₙ[|s_∞ - sₙ| < ε ∧ φ(sₙ) ∈ Zₙ]

Proof:
1. Define sequence {sₙ} where sₙ uses first n Fibonacci numbers
2. Error: εₙ = |s_∞ - sₙ| < 1/Fₙ₊₁
3. Fₙ ~ φⁿ/√5 → εₙ < √5/φⁿ
4. ∀ε>0 ∃N[n>N → εₙ < ε]
5. ∴ Arbitrary precision achievable        □

5. Structural Preservation

5.1 Structure Encoding

Definition D₇ (Structure Encoding):
StructEncode(S) := z₁·00·z₂·00·...·zₖ·00·R
where:
  S = {c₁, c₂, ..., cₖ} with relations R
  zᵢ = φ(cᵢ)
  00 = separator (maintains no-11)

5.2 Preservation Theorem

Theorem T₆ (Structure Preservation):
∀S[Structure(S) → PreservesRelations(StructEncode(S))]

Proof:
1. Components: ∀cᵢ ∈ S → φ(cᵢ) unique      [by T₁]
2. Separator: 00 ensures no boundary 11    [by construction]
3. Relations: R encoded separately          [by D₇]
4. Reconstruction: S' = Decode(StructEncode(S))
5. S' ≅ S (isomorphic)                     [preserves structure]
6. ∴ Relations preserved                   □

6. Process Encoding

6.1 Dynamic Process Definition

Definition D₈ (Process):
P := (s₀, t₁, s₁, t₂, s₂, ...)
where:
  sᵢ ∈ I (states)
  tᵢ ∈ T (transitions)
  
Definition D₉ (Process Encoding):
φ(P) := φ(s₀)·00·φ(t₁)·00·φ(s₁)·00·...

6.2 Process Completeness

Theorem T₇ (Process Encoding Completeness):
∀P[Process(P) → ∃!z ∈ Z*[φ(P) = z]]

Proof:
1. Each sᵢ → unique φ(sᵢ)                  [by T₁]
2. Each tᵢ → unique φ(tᵢ)                  [by T₁]
3. Concatenation with 00 maintains no-11   [by construction]
4. Result z ∈ Z* (extended Zeckendorf)     [valid encoding]
5. Uniqueness from component uniqueness    □

6.3 Recursive Process

Theorem T₈ (Recursive Process Encoding):
∀R[R = R(R) → ∃z_∞[φ(R) = z_∞ ∧ z_∞ ∈ Z]]

Proof:
1. Define: R₀ = initial, Rₙ₊₁ = R(Rₙ)
2. Sequence: {φ(Rₙ)} ⊂ Z
3. Convergence: Cauchy sequence in Z       [by contraction]
4. Limit: z_∞ = lim_{n→∞} φ(Rₙ)
5. z_∞ ∈ Z (closure)                       [Z is complete]
6. ∴ Recursive processes encodable         □

7. Optimality

7.1 Efficiency Theorem

Theorem T₉ (Optimal Efficiency):
∀ψ[Encoding(ψ) → |φ(s)| ≤ |ψ(s)| + O(log log n)]

Proof:
1. Information lower bound: |ψ(s)| ≥ log₂(n)
2. Zeckendorf length: |φ(s)| = ⌊log_φ(n)⌋ + 1
3. Ratio: |φ(s)|/|ψ(s)| = log₂(φ) ≈ 1.44
4. With no-11 constraint necessary:        [by A₃]
   Any valid encoding ≥ Zeckendorf length
5. ∴ φ optimal under constraints           □

7.2 Compression Bound

Theorem T₁₀ (Compression Limit):
∀C[Compression(C) → Ratio(C) ≤ 1 - 1/φ²]

Proof:
1. Maximum compression = density ratio
2. ρ = lim_{n→∞} |Zₙ|/2ⁿ                  [by T₄]
3. ρ → (φ/2)^∞ as n → ∞
4. Max compression = 1 - 2/φ = 1 - 1/φ²
5. ≈ 0.382 (38.2% maximum)                 □

8. Fundamental Completeness

8.1 Main Result

Theorem T₁₁ (Fundamental Completeness):
Binary-Zeckendorf encoding is complete, unique, and optimal for I

Formal Statement:
∃!φ: I ↔ Z such that:
  1. Bijective(φ)                          [by T₃]
  2. Complete(φ)                           [by T₂]
  3. Optimal(φ)                            [by T₉]
  4. StructurePreserving(φ)                [by T₆]
  5. ProcessCapable(φ)                     [by T₇, T₈]

Proof:
Combination of T₁-T₁₀ establishes all properties.
Uniqueness follows from optimality under constraints. □

8.2 Uniqueness of System

Theorem T₁₂ (System Uniqueness):
Binary-Zeckendorf is the unique optimal encoding

Proof by contradiction:
Assume ∃ψ ≠ φ optimal.

Case 1: ψ allows 11
  → Violates A₃
  → Not valid encoding
  → Contradiction

Case 2: ψ uses different base
  → Violates A₁ (binary)
  → Not in system
  → Contradiction

Case 3: ψ same constraints
  → ψ ≅ φ (isomorphic)
  → Not different
  → Contradiction

∴ φ unique optimal encoding                □

9. Computational Verification

9.1 Encoding Algorithm

Algorithm: EncodeZeckendorf(n)
Input: n ∈ ℕ
Output: z ∈ Z

1. If n = 0: return "0"
2. Compute Fibonacci sequence: F = [1,2,3,5,8,...]
3. Find largest Fₖ ≤ n
4. Initialize z = empty binary string
5. For i from k down to 1:
     If Fᵢ ≤ n:
       z[i-1] = 1
       n = n - Fᵢ
     Else:
       z[i-1] = 0
6. Return z

Correctness: O(log n) time, O(log n) space
Verification: No consecutive 1s by greedy selection

9.2 Decoding Algorithm

Algorithm: DecodeZeckendorf(z)
Input: z ∈ Z
Output: n ∈ ℕ

1. If z = "0": return 0
2. Initialize n = 0
3. For i from 0 to |z|-1:
     If z[i] = 1:
       n = n + F(i+1)
4. Return n

Correctness: O(|z|) time, O(1) space
Verification: Inverse of encoding

9.3 Validation Properties

Property P₁ (No Consecutive Ones):
∀z ∈ Z [¬Contains(z, "11")]

Property P₂ (Uniqueness):
∀n ∈ ℕ ∃!z ∈ Z [DecodeZeckendorf(z) = n]

Property P₃ (Completeness):
∀n ∈ ℕ ∃z ∈ Z [EncodeZeckendorf(n) = z]

Property P₄ (Invertibility):
∀n [DecodeZeckendorf(EncodeZeckendorf(n)) = n]
∀z [EncodeZeckendorf(DecodeZeckendorf(z)) = z]

10. Machine-Verifiable Assertions

10.1 Core Assertions

Assert A₁: Binary(StateSpace)
Assert A₂: Fibonacci(Capacity)
Assert A₃: No11(ValidStrings)
Assert A₄: Bijective(φ)
Assert A₅: Complete(φ)
Assert A₆: Optimal(φ)
Assert A₇: Unique(φ)

10.2 Computational Checks

Check C₁: ∀n ≤ 10000 [Valid(EncodeZeckendorf(n))]
Check C₂: ∀n ≤ 10000 [Unique(EncodeZeckendorf(n))]
Check C₃: ∀z ∈ Z₁₀ [Invertible(z)]
Check C₄: ∀s₁,s₂ [φ(s₁) = φ(s₂) → s₁ = s₂]
Check C₅: Structure preservation on test cases
Check C₆: Process encoding maintains no-11
Check C₇: Compression ratio ≤ 0.382

11. Formal System Completeness

11.1 Consistency

Theorem: System L₄ is consistent
Proof: Model exists (natural numbers with Fibonacci basis)

11.2 Completeness

Theorem: System L₄ is complete for encoding theory
Proof: All encoding questions decidable within system

11.3 Decidability

Theorem: Encoding membership is decidable
Proof: Algorithm terminates for all inputs

12. Conclusion

Final Formal Statement:

Let Ω = (I, Z, φ) be the encoding system where:
  - I = Information space (all distinguishable states)
  - Z = Zeckendorf space (binary strings without 11)
  - φ = Encoding function (I → Z)

Then:
  1. φ is a bijection (one-to-one and onto)
  2. φ is computable in O(log n) time
  3. φ⁻¹ is computable in O(log n) time
  4. φ preserves structure and process
  5. φ is optimal under entropy constraints
  6. φ is the unique such encoding

Therefore:
  Binary-Zeckendorf encoding is the complete, unique, and
  optimal representation for all information in self-referential
  systems with entropy increase.

∴ T0-4 is formally established. □