T0-2 Formal Specification: Entropy Bucket Theory
Type Definitions
type Bit = 0 | 1
type ZeckendorfString = List[Bit] where no adjacent 1s
type FibIndex = ℕ
type Capacity = Fibonacci(FibIndex)
Core Structures
EntropyContainer
structure EntropyContainer:
level: FibIndex // Capacity level index
capacity: Capacity // F_{level+1}
state: ZeckendorfString // Current state, length ≤ level
entropy: ℕ // Current entropy value
invariants:
- capacity = Fibonacci(level + 1)
- entropy = ZeckendorfDecode(state)
- entropy < capacity
- ∀i. state[i] = 1 → state[i+1] ≠ 1
ContainerOperations
function create_container(level: FibIndex) → EntropyContainer:
return EntropyContainer(
level = level,
capacity = Fibonacci(level + 1),
state = [0] * level,
entropy = 0
)
function add_entropy(C: EntropyContainer, ΔE: ℕ) → EntropyContainer:
new_entropy = C.entropy + ΔE
if new_entropy < C.capacity:
return EntropyContainer(
level = C.level,
capacity = C.capacity,
state = ZeckendorfEncode(new_entropy),
entropy = new_entropy
)
else:
return overflow(C, ΔE)
Formal Axioms
Axiom 1: Finite Capacity Necessity
∀C: SelfReferentialComponent.
can_encode_self(C) → has_finite_capacity(C)
where:
can_encode_self(C) ≡ ∃φ. φ(C) ⊆ States(C)
has_finite_capacity(C) ≡ |States(C)| < ∞
Axiom 2: Capacity Quantization
∀C: EntropyContainer.
C.capacity ∈ {F_1, F_2, F_3, ...}
where:
F_n = Fibonacci sequence
Axiom 3: No Consecutive Ones
∀C: EntropyContainer, ∀i ∈ [0, C.level-1].
C.state[i] = 1 → C.state[i+1] = 0
Theorems with Formal Proofs
Theorem 1: Capacity Count Formula
theorem capacity_count:
∀n: ℕ. count_valid_states(n) = Fibonacci(n + 2)
proof:
Base cases:
n = 0: {} → count = 1 = F_2 ✓
n = 1: {0, 1} → count = 2 = F_3 ✓
Inductive step:
valid(n) = valid(n-1) ending in 0 ∪ valid(n-2) ending in 01
count(n) = count(n-1) + count(n-2)
This is Fibonacci recurrence
∎
Theorem 2: Maximum Entropy Value
theorem max_entropy:
∀C: EntropyContainer.
max_entropy(C) = C.capacity - 1 = Fibonacci(C.level + 1) - 1
proof:
Maximum Zeckendorf representation with n digits:
10101...010 or 10101...001 (alternating pattern)
This sums to F_n + F_{n-2} + ... = F_{n+1} - 1
∎
Theorem 3: Overflow Conservation
theorem overflow_conservation:
∀C: EntropyContainer, ∀ΔE: ℕ.
let (C', excess) = overflow_with_excess(C, ΔE)
C'.entropy + excess = min(C.entropy + ΔE, total_system_capacity)
proof:
By construction of overflow function
Either rejects (excess = ΔE), collapses (C'.entropy = 0),
or cascades (excess flows to next container)
Total entropy is conserved in all cases
∎
Overflow Specifications
Overflow Types
enum OverflowType:
REJECT // Return unchanged container
COLLAPSE // Reset to ground state
CASCADE // Transfer to linked container
function overflow(C: EntropyContainer, ΔE: ℕ) → EntropyContainer:
match C.overflow_type:
REJECT: return C
COLLAPSE: return create_container(C.level)
CASCADE: return cascade_overflow(C, ΔE)
Cascade Rules
function cascade_overflow(C: EntropyContainer, ΔE: ℕ) → (EntropyContainer, ℕ):
new_entropy = C.entropy + ΔE
if new_entropy < C.capacity:
return (update_entropy(C, new_entropy), 0)
else:
filled = update_entropy(C, C.capacity - 1)
excess = new_entropy - (C.capacity - 1)
return (filled, excess)
Multi-Container Composition
System Capacity
function system_capacity(containers: List[EntropyContainer]) → ℕ:
return ∏(C.capacity for C in containers)
theorem system_capacity_product:
∀C₁, C₂: EntropyContainer.
capacity(C₁ ⊗ C₂) = capacity(C₁) × capacity(C₂)
Capacity Distribution
function redistribute(system: List[EntropyContainer], weights: List[ℝ]) → List[EntropyContainer]:
total_entropy = sum(C.entropy for C in system)
new_system = []
for C, w in zip(system, weights):
target = min(floor(total_entropy * w), C.capacity - 1)
new_system.append(update_entropy(C, target))
return balance_remainder(new_system, total_entropy)
Verification Checklist
Invariants to Verify
- ✓ All container states are valid Zeckendorf strings
- ✓ No container exceeds its Fibonacci capacity
- ✓ Overflow preserves total system entropy
- ✓ Capacity levels form Fibonacci sequence
- ✓ State transitions preserve no-11 constraint
Computational Checks
function verify_container(C: EntropyContainer) → bool:
return (
is_valid_zeckendorf(C.state) ∧
C.entropy = zeckendorf_decode(C.state) ∧
C.entropy < C.capacity ∧
C.capacity = fibonacci(C.level + 1)
)
function verify_system(S: List[EntropyContainer]) → bool:
return all(verify_container(C) for C in S)
Measurement Functions
Entropy Measurement
function measure_entropy(C: EntropyContainer) → ℕ:
return sum(C.state[i] * fibonacci(i+1) for i in range(C.level))
Utilization Ratio
function utilization(C: EntropyContainer) → ℝ:
return C.entropy / C.capacity
theorem golden_ratio_utilization:
∀ε > 0, ∃N: ℕ. ∀n > N.
|average_utilization(random_container(n)) - 1/φ| < ε
where φ = (1 + √5)/2 is golden ratio
Connection Interfaces
From T0-1
import from T0-1:
- valid_zeckendorf_string()
- zeckendorf_encode()
- zeckendorf_decode()
- no_consecutive_ones()
To T0-3
export to T0-3:
- EntropyContainer
- system_capacity()
- overflow_rules
- cascade_mechanics
Formal Verification Points
Each point maps to testable assertion:
- FV1: ∀n. fibonacci(n) is computable and unique
- FV2: ∀s: ZeckendorfString. no_11(s) = true
- FV3: ∀C, ΔE. total_entropy_before = total_entropy_after (overflow)
- FV4: ∀C₁, C₂. capacity(compose(C₁, C₂)) = capacity(C₁) × capacity(C₂)
- FV5: ∀C. lim(n→∞) utilization(C_n) → 1/φ
Complexity Analysis
Space Complexity
Container storage: O(log_φ(capacity)) = O(level)
System storage: O(num_containers × average_level)
Time Complexity
Add entropy: O(level) for Zeckendorf encoding
Measure entropy: O(level) for decoding
Overflow: O(1) for reject/collapse, O(level) for cascade
System operation: O(num_containers × level)