T23-2 φ-博弈均衡存在性定理
依赖关系
- 前置定理: T23-1 (φ-博弈策略涌现定理), T22-3 (φ-网络拓扑稳定性定理)
- 前置推论: C20-1 (collapse-aware观测推论)
- 前置定义: D1-8 (φ-表示系统), D1-7 (Collapse算子), D1-5 (观察者定义)
- 唯一公理: A1 (自指完备系统必然熵增)
定理陈述
定理 T23-2 (φ-博弈均衡存在性定理): 基于T23-1的φ-策略空间和熵增动力学,任何有限φ-博弈系统必定存在至少一个φ-Nash均衡,且该均衡满足严格的熵守恒性质:
- φ-Nash均衡的存在性: 对于个参与者的φ-博弈系统,其中策略空间满足T23-1的φ-量化条件,存在混合策略组合使得:
其中是φ-调制的均衡容忍度
- 熵守恒的均衡条件: φ-Nash均衡必须满足博弈熵的守恒分解:
3. 固定点的φ-不动条件: 均衡策略分布满足φ-不动点方程:
其中是策略在参与者策略空间中的φ-深度
- 均衡唯一性的φ-条件: 当收益矩阵满足严格φ-对角优势时:
φ-Nash均衡是唯一的
- 均衡稳定性: φ-Nash均衡对于扰动保持-稳定
证明
第一步:从熵增原理构建φ-最优反应映射
由T23-1,每个参与者的策略更新遵循熵增驱动: 在均衡状态,策略分布不再变化:。
这要求对于所有的策略: 定义φ-最优反应映射: 其中是策略空间上的概率单纯形。
由于是有限的φ-量化集合,将紧凸集映射到紧凸集。
第二步:验证φ-最优反应映射的连续性
引理 T23-2.1: φ-最优反应映射在每个处连续。
证明: 设收敛到。需证明收敛到。
由于收益函数关于连续(多线性函数),且指数函数连续,有: 因此归一化后的逐点收敛到。
由于有限,逐点收敛等价于一致收敛,故连续。∎
第三步:构造组合最优反应映射的不动点
定义组合φ-最优反应映射: 由第二步,是连续映射。
应用Brouwer不动点定理:
- 是有限维欧氏空间中的紧凸集
- 将此凸集连续映射到自身
因此存在使得: 这意味着:
φ-Nash均衡性验证: 对于任何和,由φ-最优反应的定义: 因此对所有成立。
对于的策略,有: 这正是φ-Nash均衡的定义。
第四步:验证熵守恒性质
在φ-Nash均衡处,系统达到熵增动力学的平衡态。
策略熵: 交互熵: 对于每对参与者,定义联合策略分布: 交互熵为: 结构熵: 由于系统包含个φ-调制的参与者: 熵守恒验证: 在均衡状态,总博弈熵满足: 由于均衡时(但不违反的累积增长),此分解是严格成立的。
第五步:建立φ-不动点方程
在φ-Nash均衡处,每个参与者的策略分布由熵最优化条件决定:
拉格朗日优化: 一阶条件: 解得: 归一化条件给出: φ-深度调制: 由于策略,引入φ-深度权重: 这确立了φ-不动点方程。
第六步:证明唯一性条件
当收益矩阵满足严格φ-对角优势时: 反证法证明唯一性: 假设存在两个不同的φ-Nash均衡和。
由φ-不动点方程,对于任何参与者和策略: 由于的多线性性和严格φ-对角优势条件: 这导致和之间的差异被φ-因子压缩,与它们不同的假设矛盾。
因此在严格φ-对角优势下,φ-Nash均衡唯一。
第七步:稳定性分析
扰动稳定性: 设收益矩阵受到扰动:,其中。
设是原系统的φ-Nash均衡,是扰动系统的φ-Nash均衡。
由φ-不动点方程的连续性: 其中是Lipschitz常数。
当时: 这证明了-稳定性。∎
数学形式化
class PhiNashEquilibriumExistence:
"""φ-博弈均衡存在性定理的数学实现"""
def __init__(self, phi_game_system: PhiGameSystem):
self.game = phi_game_system
self.phi = (1 + np.sqrt(5)) / 2
self.equilibrium_tolerance = 1e-6 / self.phi
self.max_iterations = 10000
def compute_phi_best_response(self, player_id: int,
other_strategies: Dict[int, Dict[PhiStrategy, float]]) -> Dict[PhiStrategy, float]:
"""计算玩家的φ-最优反应"""
if player_id not in self.game.players:
return {}
player = self.game.players[player_id]
strategies = player.strategy_space.get_all_strategies()
# 计算每个策略的期望收益
expected_payoffs = {}
for strategy in strategies:
payoff = 0.0
for other_player_id, other_dist in other_strategies.items():
if other_player_id != player_id and other_player_id in self.game.players:
base_payoff = self.game.payoff_matrix[player_id, other_player_id]
for other_strategy, other_prob in other_dist.items():
# 计算策略交互调制
interaction = self._compute_strategy_interaction(
strategy, other_strategy, player_id, other_player_id
)
payoff += base_payoff * interaction * other_prob
expected_payoffs[strategy] = payoff
# φ-软最大化响应
phi_adjusted_payoffs = {}
for strategy, payoff in expected_payoffs.items():
phi_depth = self._get_phi_depth(strategy)
phi_adjusted_payoffs[strategy] = self.phi * payoff / (self.phi ** phi_depth)
# 转换为概率分布
max_payoff = max(phi_adjusted_payoffs.values()) if phi_adjusted_payoffs else 0
exp_payoffs = {s: np.exp(p - max_payoff) for s, p in phi_adjusted_payoffs.items()}
total_exp = sum(exp_payoffs.values())
if total_exp > 0:
return {s: exp_p / total_exp for s, exp_p in exp_payoffs.items()}
else:
# 均匀分布作为后备
uniform_prob = 1.0 / len(strategies) if strategies else 0
return {s: uniform_prob for s in strategies}
def _compute_strategy_interaction(self, strategy1: PhiStrategy, strategy2: PhiStrategy,
player1_id: int, player2_id: int) -> float:
"""计算两个φ-策略之间的交互强度"""
# 基于策略值的距离
value_distance = abs(strategy1.value - strategy2.value)
# 基于Zeckendorf重叠
zeckendorf_overlap = strategy1.zeckendorf_overlap(strategy2)
# 基于网络位置
if (player1_id in self.game.players and player2_id in self.game.players):
network_factor = self._compute_network_interaction(player1_id, player2_id)
else:
network_factor = 1.0
# φ-调制的交互强度
interaction = (zeckendorf_overlap * network_factor) / (self.phi * (1 + value_distance))
return max(0.1, interaction)
def _compute_network_interaction(self, player1_id: int, player2_id: int) -> float:
"""计算网络层面的玩家交互强度"""
player1 = self.game.players[player1_id]
player2 = self.game.players[player2_id]
# 度数相关性
degree_similarity = 1.0 / (1 + abs(player1.network_node.degree - player2.network_node.degree))
# Zeckendorf表示重叠
z1 = player1.get_zeckendorf_vector()
z2 = player2.get_zeckendorf_vector()
zeck_overlap = sum(b1 * b2 for b1, b2 in zip(z1, z2))
zeck_factor = zeck_overlap / max(1, len(z1))
return degree_similarity * (1 + zeck_factor)
def _get_phi_depth(self, strategy: PhiStrategy) -> int:
"""获取策略的φ-深度"""
return strategy.d
def find_phi_nash_equilibrium(self) -> Optional[Dict[int, Dict[PhiStrategy, float]]]:
"""寻找φ-Nash均衡"""
# 初始化:所有玩家采用均匀分布
current_strategies = {}
for player_id, player in self.game.players.items():
strategies = player.strategy_space.get_all_strategies()
if strategies:
uniform_prob = 1.0 / len(strategies)
current_strategies[player_id] = {s: uniform_prob for s in strategies}
else:
current_strategies[player_id] = {}
# 迭代寻找不动点
for iteration in range(self.max_iterations):
new_strategies = {}
max_change = 0.0
# 每个玩家计算最优反应
for player_id in self.game.players:
other_strategies = {pid: dist for pid, dist in current_strategies.items()
if pid != player_id}
best_response = self.compute_phi_best_response(player_id, other_strategies)
new_strategies[player_id] = best_response
# 计算变化幅度
if player_id in current_strategies:
for strategy in best_response:
old_prob = current_strategies[player_id].get(strategy, 0.0)
new_prob = best_response[strategy]
max_change = max(max_change, abs(new_prob - old_prob))
# 检查收敛性
if max_change < self.equilibrium_tolerance:
# 验证确实是Nash均衡
if self._verify_nash_equilibrium(new_strategies):
return new_strategies
current_strategies = new_strategies
# 如果没有收敛,返回最后的近似解
return current_strategies if self._verify_approximate_nash_equilibrium(current_strategies) else None
def _verify_nash_equilibrium(self, strategy_profile: Dict[int, Dict[PhiStrategy, float]]) -> bool:
"""验证策略组合是否为φ-Nash均衡"""
for player_id in self.game.players:
if not self._check_player_best_response(player_id, strategy_profile):
return False
return True
def _verify_approximate_nash_equilibrium(self, strategy_profile: Dict[int, Dict[PhiStrategy, float]]) -> bool:
"""验证近似φ-Nash均衡"""
tolerance = self.equilibrium_tolerance * 10 # 放宽10倍
for player_id in self.game.players:
if not self._check_player_best_response(player_id, strategy_profile, tolerance):
return False
return True
def _check_player_best_response(self, player_id: int,
strategy_profile: Dict[int, Dict[PhiStrategy, float]],
tolerance: float = None) -> bool:
"""检查玩家的策略是否为最优反应"""
if tolerance is None:
tolerance = self.equilibrium_tolerance
if player_id not in strategy_profile:
return False
current_dist = strategy_profile[player_id]
other_strategies = {pid: dist for pid, dist in strategy_profile.items()
if pid != player_id}
best_response = self.compute_phi_best_response(player_id, other_strategies)
# 计算当前策略的期望收益
current_payoff = self._compute_expected_payoff(player_id, current_dist, other_strategies)
# 计算最优反应的期望收益
best_payoff = self._compute_expected_payoff(player_id, best_response, other_strategies)
# φ-Nash条件:差距在容忍度内
return abs(best_payoff - current_payoff) <= tolerance
def _compute_expected_payoff(self, player_id: int,
strategy_dist: Dict[PhiStrategy, float],
other_strategies: Dict[int, Dict[PhiStrategy, float]]) -> float:
"""计算策略分布的期望收益"""
total_payoff = 0.0
for strategy, prob in strategy_dist.items():
strategy_payoff = 0.0
for other_player_id, other_dist in other_strategies.items():
if other_player_id in self.game.players:
base_payoff = self.game.payoff_matrix[player_id, other_player_id]
for other_strategy, other_prob in other_dist.items():
interaction = self._compute_strategy_interaction(
strategy, other_strategy, player_id, other_player_id
)
strategy_payoff += base_payoff * interaction * other_prob
total_payoff += strategy_payoff * prob
return total_payoff
def verify_entropy_conservation(self, equilibrium: Dict[int, Dict[PhiStrategy, float]]) -> bool:
"""验证均衡的熵守恒性质"""
if not equilibrium:
return False
# 1. 计算策略熵
strategy_entropy = 0.0
for player_id, strategy_dist in equilibrium.items():
player_entropy = 0.0
for prob in strategy_dist.values():
if prob > 0:
player_entropy -= prob * math.log(prob)
strategy_entropy += player_entropy / self.phi
# 2. 计算交互熵
interaction_entropy = 0.0
player_ids = list(equilibrium.keys())
for i in range(len(player_ids)):
for j in range(i + 1, len(player_ids)):
player_i_id = player_ids[i]
player_j_id = player_ids[j]
if (player_i_id in self.game.players and player_j_id in self.game.players):
payoff_ij = self.game.payoff_matrix[player_i_id, player_j_id]
if payoff_ij > 0:
interaction_entropy += payoff_ij * math.log(2)
# 3. 结构熵
structure_entropy = len(equilibrium) * math.log(self.phi)
# 4. 验证守恒性
total_entropy = strategy_entropy + interaction_entropy + structure_entropy
# 比较当前博弈熵
current_entropy = self.game.compute_game_entropy()
return abs(total_entropy - current_entropy) < 1e-6
def analyze_equilibrium_properties(self, equilibrium: Dict[int, Dict[PhiStrategy, float]]) -> Dict[str, Any]:
"""分析均衡性质"""
if not equilibrium:
return {}
analysis = {
'num_players': len(equilibrium),
'is_pure': all(
max(dist.values()) > 0.999 for dist in equilibrium.values() if dist
),
'entropy_conserved': self.verify_entropy_conservation(equilibrium),
'player_analysis': {}
}
for player_id, strategy_dist in equilibrium.items():
if strategy_dist:
# 找到主导策略
dominant_strategy = max(strategy_dist.items(), key=lambda x: x[1])
# 计算策略熵
player_entropy = sum(-p * math.log(p) for p in strategy_dist.values() if p > 0)
# 有效策略数
active_strategies = sum(1 for p in strategy_dist.values() if p > 0.01)
analysis['player_analysis'][player_id] = {
'dominant_strategy': dominant_strategy[0],
'dominance_prob': dominant_strategy[1],
'strategy_entropy': player_entropy,
'active_strategies': active_strategies,
'mixed_strategy': dominant_strategy[1] < 0.999
}
return analysis
def compute_stability_measure(self, equilibrium: Dict[int, Dict[PhiStrategy, float]]) -> float:
"""计算均衡的稳定性度量"""
if not equilibrium:
return 0.0
stability_scores = []
for player_id, strategy_dist in equilibrium.items():
# 计算偏离成本
other_strategies = {pid: dist for pid, dist in equilibrium.items()
if pid != player_id}
current_payoff = self._compute_expected_payoff(player_id, strategy_dist, other_strategies)
# 尝试所有纯策略偏离
max_deviation_gain = 0.0
for strategy in self.game.players[player_id].strategy_space.get_all_strategies():
deviation_dist = {s: 0.0 for s in strategy_dist.keys()}
deviation_dist[strategy] = 1.0
deviation_payoff = self._compute_expected_payoff(player_id, deviation_dist, other_strategies)
deviation_gain = deviation_payoff - current_payoff
max_deviation_gain = max(max_deviation_gain, deviation_gain)
# 稳定性 = 1 / (1 + max_deviation_gain),用φ调制
player_stability = self.phi / (self.phi + max(0, max_deviation_gain))
stability_scores.append(player_stability)
return np.mean(stability_scores) if stability_scores else 0.0
物理解释
- 经济市场: 多厂商博弈中的价格均衡点遵循φ-Nash条件
- 生态系统: 物种间的资源竞争达到φ-调制的共存均衡
- 社交网络: 个体行为选择的集体稳定状态
实验可验证预言
- 均衡存在性: 有限φ-博弈必定收敛到稳定均衡
- φ-调制收敛: 收敛时间常数包含1/φ因子
- 熵守恒性: 均衡状态的博弈熵满足三分量分解公式
应用示例
# 创建φ-博弈系统
network = WeightedPhiNetwork(n_initial=4)
evolution = ConnectionEvolutionDynamics(network)
# 演化网络
for _ in range(20):
evolution.evolve_step()
# 初始化博弈
game = PhiGameSystem(network, n_players=4)
game.initialize_strategy_spaces()
game.compute_phi_payoff_matrix()
game.initialize_strategy_distributions()
# 寻找φ-Nash均衡
equilibrium_finder = PhiNashEquilibriumExistence(game)
equilibrium = equilibrium_finder.find_phi_nash_equilibrium()
if equilibrium:
print("找到φ-Nash均衡:")
for player_id, strategy_dist in equilibrium.items():
print(f"玩家 {player_id}:")
for strategy, prob in strategy_dist.items():
if prob > 0.01: # 只显示显著概率
print(f" 策略 {strategy}: {prob:.4f}")
# 分析均衡性质
properties = equilibrium_finder.analyze_equilibrium_properties(equilibrium)
print(f"\n均衡分析:")
print(f"纯策略均衡: {properties['is_pure']}")
print(f"熵守恒验证: {properties['entropy_conserved']}")
# 稳定性度量
stability = equilibrium_finder.compute_stability_measure(equilibrium)
print(f"稳定性度量: {stability:.4f}")
else:
print("未找到φ-Nash均衡")
注记: T23-2建立了φ-博弈系统中Nash均衡的存在性定理,结合Brouwer不动点定理和熵增原理,证明了任何有限φ-博弈必定存在满足熵守恒的均衡点。这为理解复杂系统中的稳定状态提供了坚实的数学基础。