type: theorem
verification: machine_ready
dependencies: ["A1-formal.md", "T2-6-formal.md", "T2-7-formal.md", "T2-8-formal.md"]
verification_points:
- single_bit_error_bound
- error_decay_verification
- multiple_error_subadditivity
- error_detection_capability
- propagation_control_mechanism
ErrorPropagationControl : Prop ≡
∀ε₀ : Error, d : Distance .
P(|ε_d| > δ) ≤ α · φ^(-d) · |ε₀|
where
φ : Real = (1 + √5) / 2 // 黄金比率
α : Real = system_constant
δ : Real = error_threshold
Error : Type ≡
record {
position : ℕ
magnitude : Real
type : ErrorType
}
ErrorType : Type ≡
| SingleBit // 单比特翻转
| Burst // 突发误差
| Systematic // 系统性误差
ErrorImpact : PhiCode × Error → Real ≡
λ(code, error) .
|decode(code) - decode(corrupt(code, error))|
where
corrupt : PhiCode × Error → PhiCode
decode : PhiCode → ℕ
PropagationDistance : Error × Error → ℕ ≡
λ(e₁, e₂) . |position(e₂) - position(e₁)|
ErrorDecay : Prop ≡
∀code : PhiCode, e : Error, d : ℕ .
Valid_11(code) →
ImpactAt(code, e, d) ≤ ImpactAt(code, e, 0) · φ^(-d)
where
ImpactAt(code, e, d) = magnitude of error e after propagating distance d
MultipleErrorSubadditivity : Prop ≡
∀code : PhiCode, E : Set[Error] .
Valid_11(code) →
ImpactTotal(code, E) < ∑_{e ∈ E} ImpactSingle(code, e)
Proof_sketch:
1. No-11约束限制了某些误差组合
2. Fibonacci数的非线性增长
3. 某些误差相互抵消
ErrorDetection : Prop ≡
∃detector : PhiCode → Option[Error] .
∀code : PhiCode, e : Error .
corrupt(code, e) violates no-11 →
detector(corrupt(code, e)) = Some(e)
DetectionProbability : Real ≡
|{e : Error | detectable(e)}| / |{e : Error | possible(e)}|
≥ 1 - φ^(-1)
≈ 0.382
ErrorPropagationAnalysis : Algorithm ≡
Input: code : PhiCode, errors : List[Error]
Output: PropagationReport
Invariants:
- ∀e ∈ errors . Valid_11(corrupt(code, e)) ∨ detectable(e)
- Decay rate ≤ φ^(-1)
Process:
1. original ← decode(code)
2. for each e in errors:
corrupted ← corrupt(code, e)
if Valid_11(corrupted):
impact[e] ← |decode(corrupted) - original|
else:
detected.add(e)
3. combined ← corrupt_multiple(code, errors)
4. verify SubAdditivity:
assert |decode(combined) - original| < sum(impact.values())
5. compute decay_rate from impact distribution
6. return PropagationReport(impact, detected, decay_rate)
ComputeErrorBound : Algorithm ≡
Input: n : ℕ, error_prob : Real
Output: bound : Real
Process:
1. max_fib_index ← ⌊log_φ(n)⌋
2. single_bit_max ← F[max_fib_index]
3. expected_errors ← n × error_prob
4. bound ← single_bit_max × (1 - φ^(-expected_errors))
5. return bound
SingleBitErrorBound : Prop ≡
∀n : ℕ, i < ⌊log_φ(n)⌋ .
ErrorImpact(encode(n), SingleBit(i)) ≤ F_i
ExpectedError : Prop ≡
∀n : ℕ, p : Probability .
E[|Error|] = O(√n × p)
Compare with binary:
Binary: E[|Error|] = O(n × p)
Improvement factor: O(√n)
ErrorLocality : Prop ≡
∀code : PhiCode, e : Error .
∃radius : ℕ .
∀i . distance(i, position(e)) > radius →
bit(code, i) = bit(corrupt(code, e), i)
verify_single_bit_bound(test_size):
for n in range(1, test_size):
code = encode(n)
for i in range(len(code)):
if code[i] == 1:
corrupted = flip_bit(code, i)
if is_valid_no11(corrupted):
impact = abs(decode(corrupted) - n)
assert impact == fib[i]
verify_error_decay(code, error_pos):
impacts = []
for d in range(len(code)):
if error_pos + d < len(code):
impact = measure_impact_at_distance(code, error_pos, d)
impacts.append(impact)
# 验证指数衰减
for i in range(1, len(impacts)):
if impacts[i] > 0 and impacts[i-1] > 0:
decay_rate = impacts[i] / impacts[i-1]
assert decay_rate <= 1/φ + ε
verify_subadditivity(code, error_positions):
# 单独误差影响
individual_impacts = []
for pos in error_positions:
impact = measure_single_error(code, pos)
individual_impacts.append(impact)
# 组合误差影响
combined_impact = measure_combined_errors(code, error_positions)
# 验证次可加性
assert combined_impact < sum(individual_impacts)
verify_detection_capability(test_size):
detectable_count = 0
total_count = 0
for n in range(1, test_size):
code = encode(n)
for i in range(len(code)):
total_count += 1
corrupted = flip_bit(code, i)
if not is_valid_no11(corrupted):
detectable_count += 1
detection_rate = detectable_count / total_count
assert detection_rate >= 1 - 1/φ - ε
T2-6 : 提供no-11约束的数学基础
T2-7 : 确立φ-表示的必然性
T2-8 : 动态适应性需要误差控制
T2-10 : 完备性在有误差情况下仍然保持
T2-11 : 最大熵增率不受误差显著影响
def compute_error_resilience(n: int) -> float:
"""计算数n的φ-表示的误差韧性"""
code = encode(n)
total_bits = len(code)
detectable_errors = count_detectable_errors(code)
resilience = detectable_errors / total_bits
return resilience
def estimate_propagation_bound(initial_error: float, distance: int) -> float:
"""估计误差传播界限"""
φ = (1 + sqrt(5)) / 2
α = 2.0 # 系统常数,经验值
bound = α * (φ ** (-distance)) * initial_error
return bound
def analyze_error_cascade(code: List[int], error_positions: List[int]) -> Dict:
"""分析误差级联效应"""
cascade_effects = {}
for primary_pos in error_positions:
affected_positions = find_affected_positions(code, primary_pos)
cascade_effects[primary_pos] = {
'direct_impact': compute_direct_impact(code, primary_pos),
'cascade_range': len(affected_positions),
'total_impact': compute_total_impact(code, primary_pos, affected_positions)
}
return cascade_effects
形式化规范: φ- 表示通过 Fibonacci 结构实现误差传播的指数衰减控制