type: theorem
verification: machine_ready
dependencies: ["A1-formal.md", "T2-6-formal.md", "T2-7-formal.md", "L1-5-formal.md"]
verification_points:
- efficiency_lower_bound
- local_recoding_correctness
- no11_preservation
- convergence_to_stability
- adaptation_process_validity
DynamicAdaptability : Prop ≡
∀t : Time, S_t : SystemState, φ_t : PhiEncoding .
Evolution(S_t, S_{t+1}) ∧ H(S_{t+1}) > H(S_t) →
∃φ_{t+1} : PhiEncoding .
(Efficiency(φ_{t+1}) ≥ EfficiencyMin ∧
AdaptProcess(φ_t → φ_{t+1}) ∈ Valid_11 ∧
LocallyOptimal(φ_{t+1}, S_{t+1}))
where
EfficiencyMin : Real = 1/(1 + c·log(t)) // c是系统常数
Valid_11 : Set = {binary | no_consecutive_ones(binary)}
LocallyOptimal : 局部最优性条件
DynamicEnvironment : Type ≡
record {
states : Time → SystemState
entropy_law : ∀t . H(states(t+1)) > H(states(t))
info_growth : ∀t . |Info(states(t+1))| > |Info(states(t))|
}
EncodingPressure : Time → Real ≡
λt . H(S_t) / log₂(|Available_Codes(φ_t)|)
Lemma_PressureMonotonic : Prop ≡
∀t₁ t₂ . t₁ < t₂ → EncodingPressure(t₁) ≤ EncodingPressure(t₂)
LocalRecode : Info × PhiEncoding → PhiEncoding ≡
λ(x, φ) .
if Efficiency(x, φ) ≥ θ then
φ(x) // 保持原编码
else
OptimalFibonacciEncode(x) // 重新编码
where
θ : Real = dynamic_threshold(φ, current_pressure)
EfficiencyLowerBound : Prop ≡
∃c > 0 . ∀t : Time, φ_t : PhiEncoding .
IsAdaptive(φ_t) → Efficiency(φ_t) ≥ 1/(1 + c·log(t))
Proof_sketch:
1. 需要重编码的元素数量 N_t = O(√|Info(S_t)|)
2. Fibonacci性质保证稀疏性
3. 重编码开销次线性
4. 整体效率有下界
AdaptationPreservesNo11 : Prop ≡
∀φ : PhiEncoding, x : Info .
Valid_11(φ(x)) → Valid_11(LocalRecode(x, φ))
Proof_components:
- Initial_φ_valid: by T2-6
- Fibonacci_decomposition_valid: by mathematical property
- Composition_preserves_validity: by structural induction
DynamicStability : Prop ≡
∀ε > 0 . ∃T : Time . ∀t > T .
|dEfficiency(φ_t)/dt| < ε
ProcessEntropyGrowth : Prop ≡
∀t : Time . dH_process(S_t)/dt > 0
StructuralStability : Prop ≡
lim_{t→∞} H_structure(φ_t) = H_max
AdaptivePhiEncode : Algorithm ≡
Input: info_stream : Stream[Info], φ_current : PhiEncoding
Output: φ_adapted : PhiEncoding
Invariants:
- ∀step . Valid_11(φ_current)
- ∀step . Efficiency(φ_current) ≥ EfficiencyMin
Process:
1. threshold ← ComputeThreshold(φ_current)
2. for each info ∈ info_stream:
eff ← ComputeEfficiency(info, φ_current)
if eff < threshold:
new_code ← OptimalFibonacciEncode(info)
φ_current.update(info → new_code)
assert Valid_11(φ_current[info])
3. return φ_current
EfficiencyMonotonicity : Prop ≡
∀t_i < t < t_{i+1} .
NoRecoding(t_i, t_{i+1}) →
Efficiency(φ_t) ≥ Efficiency(φ_{t+1})
RecodingFrequencyDecay : Prop ≡
lim_{t→∞} |{s < t : Recoding_at(s)}| / t = 0
AsymptoticOptimality : Prop ≡
lim_{t→∞} Efficiency(φ_t) / Efficiency_optimal = 1
verify_efficiency_bound(φ_sequence, time_range):
for t in time_range:
assert Efficiency(φ_sequence[t]) ≥ 1/(1 + c*log(t))
verify_no11_preservation(adaptation_trace):
for step in adaptation_trace:
for encoding in step.encodings:
assert is_valid_no11(encoding)
verify_convergence(φ_sequence, window=1000):
late_sequence = φ_sequence[-window:]
efficiency_changes = [abs(eff[i+1] - eff[i]) for i in range(len(late_sequence)-1)]
assert mean(efficiency_changes) < ε
- T2-6: 提供no-11约束的基础
- T2-7: 证明φ-表示的必然性
- L1-5: Fibonacci结构的数学性质
- T2-9: 将使用动态适应性处理误差传播
- T2-10: 完备性依赖于动态适应能力
形式化规范:φ-表示通过局部重编码实现动态适应,保持效率下界和no-11约束