ObserverMap : Type ≡ O × S → Record
IsObserver(O) : Prop ≡
O ⊆ S ∧ // 内生性
∃observe : O × S → Record . // 观察能力
∀o ∈ O, s ∈ S . observe(o,s) ∈ S' // 记录在系统内
Construction of information map:
Given time metric τ, define:
I(S(t)) = {(Desc(S(k) → S(k+1)), τ(S(k),S(k+1))) | k < t}
Properties:
1. Each transition S(k) → S(k+1) adds description
2. Time stamp τ(S(k),S(k+1)) provides ordering
3. I(S(t)) grows monotonically with t
Verification of monotonicity:
t < t' → I(S(t)) ⊂ I(S(t'))
Because transitions up to t are subset of those up to t' ∎
Logical necessity:
Given information map I : S → Info:
1. Information I(S(t)) must be "recognized"
2. Recognition requires processing structure
3. By self-referential completeness:
Processing structure must be internal
4. This internal structure is the observer
Construction:
O = {o ∈ S | ∃f : I(S) → L . o = [f]}
where [f] is encoding of function f.
Properties:
- Endogenous: O ⊆ S ✓
- Processing: Maps I(S) to language L ✓
- Self-referential: o = [f] is describable ✓
Therefore observer exists ∎
Observation creates records:
Given observer O ⊆ S:
1. Observation: observe(o,s) produces record r
2. Record storage: r ∈ S' (post-observation state)
3. Key insight: r contains (o,s) correlation
4. This correlation ∉ original descriptions
5. Therefore Desc(r) ∉ D(t)
6. So |D(t+1)| > |D(t)|
7. Hence H(S(t+1)) > H(S(t))
Note: Even "perfect" observation increases entropy
because recording is necessary ∎
Proof by cyclic implication:
We have proven:
(1) → (2) → (3) → (4) → (5) → (1)
This establishes equivalence:
- Any condition implies all others
- All five form an equivalence class
- Starting from any one, derive the rest
Therefore all five conditions are equivalent ∎
def verify_asymmetry_implies_time(system):
# 构造时间度量
def time_metric(i, j):
if i == j:
return 0.0
total = 0.0
for k in range(i, j):
state_k = system.get_state(k)
state_k1 = system.get_state(k+1)
# 计算新增元素数
diff = len(state_k1 - state_k)
total += diff
return total
# 验证时间度量性质
for i in range(5):
for j in range(i, 5):
for k in range(j, 5):
# 非负性
assert time_metric(i, j) >= 0
# 同一性
if i == j:
assert time_metric(i, j) == 0
# 可加性
assert abs(time_metric(i, k) -
(time_metric(i, j) + time_metric(j, k))) < 1e-10
return True
def verify_time_implies_information(system):
# 构造信息映射
information_maps = []
for t in range(10):
info_t = set()
# 收集所有转换信息
for k in range(t):
state_k = system.get_state(k)
state_k1 = system.get_state(k+1)
# 转换描述
transition = f"S{k}->S{k+1}"
# 时间标记
timestamp = k
info_t.add((transition, timestamp))
information_maps.append(info_t)
# 验证单调性
for i in range(len(information_maps)-1):
assert information_maps[i].issubset(information_maps[i+1])
return True
def verify_information_implies_observer(system):
# 检查信息处理结构
information = system.get_information()
# 寻找能处理信息的子系统
observers = []
for element in system.get_all_elements():
# 检查是否能处理信息
if hasattr(element, 'process_information'):
observers.append(element)
# 验证观察者存在
assert len(observers) > 0
# 验证观察者内生性
for obs in observers:
assert obs in system.get_all_elements()
# 验证观察者能处理信息
for obs in observers:
result = obs.process_information(information)
assert result is not None
return True