Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

T1-1-formal: 熵增必然性定理的形式化证明

机器验证元数据

type: theorem
verification: machine_ready
dependencies: ["A1-formal.md", "D1-1-formal.md", "D1-6-formal.md"]
verification_points:
  - recursive_unfolding
  - new_descriptions_necessity
  - state_space_growth
  - entropy_strict_increase

核心定理

定理 T1-1(熵增必然性)

EntropyIncreaseNecessity : Prop ≡
  ∀S : System . 
    SelfRefComplete(S) → (∀t : Time . H(S(t+1)) > H(S(t)))

where
  SelfRefComplete : System → Prop (from D1-1)
  H : System → ℝ (entropy from D1-6)

辅助定义

递归深度

RecursiveDepth : Element → ℕ ≡
  λe . match Pre(e) with
    | ∅ → 0
    | _ → 1 + max{RecursiveDepth(e') | e' ∈ Pre(e)}

where
  Pre(e) = {e' ∈ S | Desc(e') = e}

新描述层

NewDescriptionLayer : System × Time → P(Element) ≡
  λ(S,t) . {Desc^(t+1)(S(t))} ∪ {e | RecursiveDepth(e) = t+1}

递归展开证明

引理 T1-1.1(描述的递归展开)

RecursiveUnfolding : Prop ≡
  ∀S,t . SelfRefComplete(S) → 
    S(t) ⊇ {s₀, [Desc_t], Desc_t(s₀), Desc_t([Desc_t]), ...}

证明

Proof of recursive unfolding:
  Given SelfRefComplete(S):
  
  1. Self-reference: Desc maps S to Desc(S)
  2. [Desc_t] ∈ S(t) (description function representation)
  3. Desc_t([Desc_t]) ∈ Range(Desc_t) (self-reference)
  4. At t+1: Must describe Desc_t([Desc_t])
  5. Creates: Desc_{t+1}(Desc_t([Desc_t]))
  6. This process unfolds with time ∎

新元素必然性

引理 T1-1.2(新描述不在当前系统)

NewDescriptionNecessity : Prop ≡
  ∀S,t . SelfRefComplete(S) → 
    Desc^(t+1)(S(t)) ∉ S(t)

证明

Proof by contradiction:
  Assume Desc^(t+1)(S(t)) ∈ S(t).
  
  1. Desc^(t+1)(S(t)) describes entire S(t)
  2. Must contain info about every element in S(t)
  3. Including Desc^(t+1)(S(t)) itself
  4. This requires Desc(Desc^(t+1)(S(t)))
  5. Which requires Desc(Desc(Desc^(t+1)(S(t))))
  6. Creates infinite regress
  
  Key insight: Finite representation at time t
  - At time t, system has unfolded t levels of recursion
  - Desc^(t+1)(S(t)) encodes "recursion up to depth t"
  - If it existed at t, would encode depth t+1
  - Contradicts temporal dependency of recursive depth
  
  Therefore Desc^(t+1)(S(t)) ∉ S(t) ∎

状态空间增长

引理 T1-1.3(状态严格增加)

StateSpaceGrowth : Prop ≡
  ∀S,t . SelfRefComplete(S) → 
    |S(t+1)| > |S(t)|

证明

Proof of state growth:
  From Lemma T1-1.2:
  1. Desc^(t+1)(S(t)) ∉ S(t)
  2. S(t+1) = S(t) ∪ {Desc^(t+1)(S(t))} ∪ Δ_t
  3. |S(t+1)| ≥ |S(t)| + 1
  4. Therefore |S(t+1)| > |S(t)| ∎

描述多样性增长

引理 T1-1.4(描述集合扩大)

DescriptionDiversityGrowth : Prop ≡
  ∀S,t . SelfRefComplete(S) → 
    |Descriptions(S(t+1))| > |Descriptions(S(t))|

where
  Descriptions(S) = {d ∈ L | ∃s ∈ S . d = Desc(s)}

证明

Proof of description growth:
  Let D_t = Descriptions(S(t)).
  
  1. Desc^(t+1)(S(t)) encodes entire S(t)
  2. Its description: Desc(Desc^(t+1)(S(t)))
  3. This contains info about all of D_t
  4. Cannot be expressed by any d ∈ D_t
  5. Therefore Desc(Desc^(t+1)(S(t))) ∉ D_t
  6. D_{t+1} ⊃ D_t ∪ {Desc(Desc^(t+1)(S(t)))}
  7. |D_{t+1}| > |D_t| ∎

主定理证明

定理:熵增必然性

MainTheorem : Prop ≡
  ∀S : System . 
    SelfRefComplete(S) → (∀t : Time . H(S(t+1)) > H(S(t)))

证明

Proof of entropy increase:
  Given SelfRefComplete(S):
  
  1. By Lemma T1-1.1: S(t) has recursive structure
  2. By Lemma T1-1.2: Desc^(t+1)(S(t)) ∉ S(t)
  3. By Lemma T1-1.3: |S(t+1)| > |S(t)|
  4. By Lemma T1-1.4: |D_{t+1}| > |D_t|
  
  5. By entropy definition (D1-6):
     H(S(t)) = log |Descriptions(S(t))|
     
  6. Since |D_{t+1}| > |D_t|:
     H(S(t+1)) = log |D_{t+1}| > log |D_t| = H(S(t))
     
  Therefore ∀t : H(S(t+1)) > H(S(t)) ∎

机器验证检查点

检查点1:递归展开验证

def verify_recursive_unfolding(system, time):
    # 验证系统包含递归结构
    elements = system.get_elements_at_time(time)
    
    # 检查基本元素
    assert system.has_initial_element()
    
    # 检查描述函数表示
    assert system.has_description_function()
    
    # 检查递归描述
    desc_func = system.get_description_function()
    assert desc_func(desc_func) in elements
    
    return True

检查点2:新描述必然性验证

def verify_new_descriptions(system):
    for t in range(10):
        current_state = system.get_state(t)
        
        # 构造新描述
        new_desc = system.create_complete_description(current_state)
        
        # 验证不在当前状态
        assert new_desc not in current_state
        
        # 验证递归深度
        assert system.recursive_depth(new_desc) == t + 1
        
    return True

检查点3:状态空间增长验证

def verify_state_space_growth(system):
    sizes = []
    
    for t in range(10):
        state = system.get_state(t)
        sizes.append(len(state))
        
        if t > 0:
            # 验证严格增长
            assert sizes[t] > sizes[t-1]
            
            # 验证至少增加1
            assert sizes[t] >= sizes[t-1] + 1
            
    return True

检查点4:熵严格增加验证

def verify_entropy_increase(system):
    entropies = []
    
    for t in range(10):
        state = system.get_state(t)
        entropy = system.calculate_entropy(state)
        entropies.append(entropy)
        
        if t > 0:
            # 验证熵严格增加
            assert entropies[t] > entropies[t-1]
            
            # 验证描述多样性增加
            desc_count_prev = len(system.get_descriptions(t-1))
            desc_count_curr = len(system.get_descriptions(t))
            assert desc_count_curr > desc_count_prev
            
    return True

实用函数

class SelfReferentialSystem:
    """自指完备系统实现"""
    def __init__(self):
        self.states = [set()]  # 时间序列状态
        self.descriptions = [{}]  # 时间序列描述
        self.time = 0
        
    def evolve(self):
        """系统演化一步"""
        current_state = self.states[self.time]
        current_descs = self.descriptions[self.time]
        
        # 创建新的完整描述
        new_complete_desc = self.create_complete_description(current_state)
        
        # 新状态包含旧状态和新描述
        new_state = current_state.copy()
        new_state.add(new_complete_desc)
        
        # 添加递归深度为t+1的新元素
        new_elements = self.generate_new_layer(self.time + 1)
        new_state.update(new_elements)
        
        # 更新描述集合
        new_descs = current_descs.copy()
        for elem in new_state - current_state:
            new_descs[elem] = self.describe(elem)
            
        self.states.append(new_state)
        self.descriptions.append(new_descs)
        self.time += 1
        
        return new_state
        
    def calculate_entropy(self, state=None):
        """计算系统熵"""
        if state is None:
            state = self.states[self.time]
            
        desc_set = set(self.descriptions[self.time].values())
        return math.log2(len(desc_set)) if desc_set else 0
        
    def recursive_depth(self, element):
        """计算元素的递归深度"""
        if not hasattr(element, 'predecessors'):
            return 0
            
        if not element.predecessors:
            return 0
            
        return 1 + max(self.recursive_depth(pred) 
                      for pred in element.predecessors)


def entropy_lower_bound(time):
    """熵的下界"""
    return math.log2(time + 1)

形式化验证状态

  • 定理语法正确
  • 递归展开机制完整
  • 新元素必然性证明严格
  • 状态空间增长证明清晰
  • 熵增证明完备
  • 最小完备