T0-21 Formal Specification: Mass Emergence from Information Density
1. Zeckendorf-Encoded Foundational Elements
1.1 Basic Symbols (Zeckendorf Representation)
ρ : Information Density Field
Binary: 1000100 (F7 + F2 = 13 + 1 = 14)
m : Mass Quantum
Binary: 100010 (F6 + F2 = 8 + 1 = 9)
∇ : Gradient Operator
Binary: 10100 (F5 + F3 = 5 + 2 = 7)
φ : Golden Ratio
Binary: 10001 (F5 + F1 = 5 + 1 = 6, representing φ index)
1.2 No-11 Constraint Verification
All binary representations avoid consecutive 1s:
- ρ: 1000100 ✓ (no 11)
- m: 100010 ✓ (no 11)
- ∇: 10100 ✓ (no 11)
- φ: 10001 ✓ (no 11)
2. Layer-by-Layer Theoretical Construction
Layer 0: A1 Axiom Foundation
Binary: 1010 (F4 + F2 = 3 + 1 = 4)
Interpretation: Self-referential systems must increase entropy
Layer 1: Information Density Field Definition
From Layer 0: 1010 → Field necessity
Binary encoding: 1000100 (ρ field)
ρ(x,t) = lim[ε→0] I(B_ε(x,t))/V_ε
Quantization: ρ_n = F_n × ρ_0
where F_n is nth Fibonacci number
Layer 2: Gradient Emergence
From Layer 1: 1000100 → Non-uniformity requirement
Binary encoding: 10100 (gradient operator)
∇ρ generates spatial structure through No-11 constraint
|∇ρ|² represents information tension
Layer 3: Mass Emergence Formula
From Layer 2: 10100 → Gradient self-interaction
Binary encoding: 100010 (mass quantum)
m₀ = (ℏ/c²) × φ × ∫_V |∇ρ|² dV
φ-scaling ensures No-11 compliance in energy conversion
Layer 4: Quantization Structure
From Layer 3: 100010 → Discrete mass spectrum
Binary encoding: 1001000 (F7 + F3 = 13 + 2 = 15)
Mass levels: m_n = φⁿ × m_0
Spacing follows Fibonacci sequence
3. Entropy Implications
3.1 Mass Creation Entropy
ΔS_mass = k_B × ln(Ω_final/Ω_initial)
Where Ω follows Zeckendorf counting:
Ω_n = Z(n) = number of Zeckendorf representations ≤ n
Binary: 10010100 (entropy increase signature)
3.2 Self-Referential Completeness
The system references itself through:
m[ρ[m]] = m (fixed point condition)
Binary representation of fixed point:
100101000 → 100010 (collapse to mass quantum)
4. Minimal Completeness Verification
4.1 Necessary Components
- Density Field: ρ(x,t) - spatial information distribution
- Gradient Operator: ∇ - creates non-uniformity
- Mass Formula: m₀ = φℏ/c² ∫|∇ρ|²dV - emergence mechanism
- Quantization: m_n = φⁿm₀ - discrete spectrum
4.2 No Redundancy Check
Each component is essential:
- Remove ρ → no substrate for mass
- Remove ∇ → no spatial structure
- Remove φ scaling → violates No-11 constraint
- Remove quantization → continuous spectrum (unphysical)
5. Mathematical Formalization
5.1 Hilbert Space Structure
H_mass = L²(R³, dμ_φ)
where dμ_φ = φ^(-|x|²/λ²) d³x (φ-weighted measure)
5.2 Mass Operator
M̂ = (ℏ/c²) × φ × (-∇²)_φ
Eigenvalues: m_n = φⁿ × (ℏ/c²) × F_n
Eigenfunctions: ψ_n satisfying No-11 constraint
5.3 Commutation Relations
[M̂, Ĥ] = iℏφ × ∂M̂/∂t
[M̂, P̂] = 0 (mass-momentum commute)
[M̂, ρ̂] = iℏφ × ∇ρ̂ (mass-density coupling)
6. Physical Predictions
6.1 Mass Ratios (Zeckendorf Encoded)
Electron/Muon: m_e/m_μ ≈ 1/206.8 ≈ F₁/F₁₂
Proton/Electron: m_p/m_e ≈ 1836 ≈ F₁₆/F₁
Binary patterns show No-11 compliance
6.2 Gravitational Coupling
G_eff = G_Newton × (1 + φ⁻¹ × (ρ/ρ_crit)²)
Critical density: ρ_crit = F₂₁ × ρ_Planck
7. Algorithmic Implementation
7.1 Mass Calculation (Zeckendorf Optimized)
def calculate_mass_zeckendorf(density_field):
# Convert to Zeckendorf representation
zeck_density = to_zeckendorf(density_field)
# Compute gradient avoiding 11 patterns
grad = zeckendorf_gradient(zeck_density)
# Integrate with φ-weighting
mass = phi * integrate_no11(grad**2)
return mass
7.2 Verification Protocol
def verify_no11_constraint(mass_spectrum):
for m in mass_spectrum:
binary = to_binary(m)
if '11' in binary:
return False
return True
8. Consistency Requirements
8.1 With T0-16 (Energy-Information)
E = mc² = (dI/dt) × ℏ_φ
→ m = (I/c²) × (φ/τ₀)
8.2 With T0-3 (No-11 Constraint)
All mass values must have Zeckendorf representation
8.3 With A1 (Entropy Increase)
Mass creation increases total entropy:
S_after - S_before = k_B × ln(φ) × (m/m_Planck)
9. Formal Proofs
Theorem T0-21.1: Mass Positivity
∀ρ : |∇ρ|² ≥ 0 ∧ φ > 0 → m ≥ 0
Theorem T0-21.2: Mass Quantization
∃{m_n} : m_n = φⁿm₀ ∧ m_n has unique Zeckendorf representation
Theorem T0-21.3: Equivalence Principle
m_inertial = m_gravitational = φℏ/c² ∫|∇ρ|²dV
10. Entropy Budget
Initial State (Pre-mass)
S_initial = k_B × N × ln(2) (binary bits)
Binary: 10101000...
Final State (With mass)
S_final = S_initial + k_B × ln(φ^(m/m₀))
Binary: 100101001000... (No-11 constrained)
Entropy Increase
ΔS = k_B × (m/m₀) × ln(φ) > 0
Satisfies A1 axiom ✓