T0-18: Quantum State Emergence from No-11 Constraint (Formal)
Axioms
A1 (Unique Axiom): Self-referential complete systems necessarily increase entropy
∀S: SelfRef(S) ∧ Complete(S) → dH(S)/dt > 0
Definitions
D18.1 (Classical Binary State):
S_classical ∈ {0, 1}
D18.2 (Quantum State):
|ψ⟩ = α|0⟩ + β|1⟩
where α, β ∈ ℂ, |α|² + |β|² = 1
D18.3 (φ-Amplitude Encoding):
α = Σᵢ aᵢ·Fᵢ/φⁿ, aᵢ ∈ {0,1}, aᵢ·aᵢ₊₁ = 0
β = Σⱼ bⱼ·Fⱼ/φⁿ, bⱼ ∈ {0,1}, bⱼ·bⱼ₊₁ = 0
D18.4 (Collapse Operation):
M: |ψ⟩ → {|0⟩ with P = |α|², |1⟩ with P = |β|²}
D18.5 (Entangled State):
|Ψ⟩_AB ∈ ℋ_A ⊗ ℋ_B
Entangled(|Ψ⟩) ⟺ |Ψ⟩ ≠ |ψ⟩_A ⊗ |φ⟩_B for any |ψ⟩_A, |φ⟩_B
Lemmas
L18.1 (Self-Description Impossibility):
∀S ∈ {0,1}: SelfDesc(S) → Violation(No-11)
Proof:
- If S = 1 ∧ Desc(S) = 1 → pattern 11
- If S = 0 → ¬Active(S) → ¬Desc(S)
- Therefore classical states cannot self-describe ∎
L18.2 (Superposition Resolution):
∃|ψ⟩ = α|0⟩ + β|1⟩: SelfDesc(|ψ⟩) ∧ ¬Violation(No-11)
Proof:
- Partial activity: 0 < |α|² < 1
- Avoids 11: not fully active
- Enables description: not fully inactive ∎
Theorems
T18.1 (Superposition Necessity):
No-11 ∧ SelfRef → ∃|ψ⟩: Quantum(|ψ⟩)
Proof:
- From L18.1: Classical states insufficient
- Need intermediate state between 0 and 1
- Linear combination: α·0 + β·1
- This defines quantum superposition ∎
T18.2 (Complex Amplitude Structure):
∀|ψ⟩: Evolution(|ψ⟩) ∧ No-11 → α, β ∈ ℂ
Proof:
- Real amplitudes restrict to ℝ line
- No-11 blocks certain real transitions
- Complex plane provides rotation freedom
- Phase θ = 2π·Z(m)/φⁿ where Z is Zeckendorf
- Complex structure ensures valid evolution ∎
T18.3 (Born Rule Derivation):
InfoConservation → |α|² + |β|² = 1
Proof:
- Total information: I_total = 1 bit
- Probability conservation: P₀ + P₁ = 1
- From observer theory: P₀ = |⟨0|ψ⟩|² = |α|²
- Similarly: P₁ = |⟨1|ψ⟩|² = |β|²
- Therefore: |α|² + |β|² = 1 ∎
T18.4 (Collapse Mechanism):
Measurement(|ψ⟩) → Collapse via max(ΔH)
Proof:
- Measurement increases entropy: ΔH ≥ log φ
- Superposition entropy: H = -|α|²log|α|² - |β|²log|β|²
- Collapse selects path maximizing ΔH_total
- Probability ∝ exp(ΔH/k_B)
- This yields Born rule probabilities ∎
T18.5 (Collapse Timing):
∃t_c: |α(t_c)|² → 1 ∨ |β(t_c)|² → 1 triggers collapse
Proof:
- Evolution toward definite state
- Approaching classical 0 or 1
- Observer interaction would create 11
- Collapse prevents No-11 violation
- This defines measurement moment ∎
T18.6 (Optimal φ-Qubit):
max I(|ψ⟩) under No-11 → |α|² = φ/(φ+1), |β|² = 1/(φ+1)
Proof:
- Maximize H(|α|², |β|²) under |α|² + |β|² = 1
- No-11 restricts evolution paths
- Optimal ratio: φ:1
- This is the golden ratio distribution ∎
T18.7 (Entanglement from No-11):
No-11_global → ∃|Ψ⟩: Entangled(|Ψ⟩)
Proof:
- Local No-11 on each qubit
- Global No-11 across system
- Creates correlations: |11⟩ forbidden locally
- Non-factorizable: |Ψ⟩ ≠ |ψ_A⟩ ⊗ |ψ_B⟩
- This is quantum entanglement ∎
T18.8 (Schrödinger Equation):
InfoFlow ∧ Unitary → iℏ_φ ∂|ψ⟩/∂t = H|ψ⟩
Proof:
- Information flow: dI/dt from T0-16
- Normalization preservation: U†U = 1
- Infinitesimal: U(dt) = 1 - iH·dt/ℏ_φ
- ℏ_φ = φ·τ₀·log φ from T0-16
- Yields Schrödinger equation ∎
Corollaries
C18.1 (Quantum Information Unit):
1 qubit = log₂(2) = 1 bit classical capacity
1 φ-qubit = log_φ(φ+1) ≈ 1.44 bits optimal capacity
C18.2 (Measurement Back-action):
∀M: ΔH_measurement ≥ log φ ≈ 0.694 bits
C18.3 (No-Cloning):
No-11 → ¬∃U: U|ψ⟩|0⟩ = |ψ⟩|ψ⟩ for arbitrary |ψ⟩
Binary Encoding
T0-18 = 18₁₀ = 10010₂ (standard) = 100010 (Zeckendorf)
Decomposition: 18 = 13 + 5 = F₇ + F₅
Layer derivation from T0-17 (10001):
- T0-17: 10001 (entropy foundation)
- Add bit 1: 10010 (quantum emergence)
- Bit significance:
- Position 1 (value 2): Superposition active
- Position 4 (value 16): Complex structure
Consistency Verification
- No-11 Preservation: All quantum states maintain Zeckendorf encoding
- Entropy Increase: Measurement always increases total entropy
- Information Conservation: Unitary evolution preserves total information
- Self-Reference: Quantum states enable self-description without violation
- Minimal Completeness: No additional structure beyond necessity