T0-17 Formal: Information Entropy in Zeckendorf Encoding
Formal System Specification
Language L₁₇
- Constants: 0, 1, φ = (1+√5)/2, τ₀, ε_φ = 1/φ²
- Variables: H, S, p_i, h_i, F_i, t
- Functions:
- Z: ℝ⁺ → {0,1}* (Zeckendorf encoding)
- H_S: P → ℝ⁺ (Shannon entropy)
- H_φ: S → ℕ (φ-entropy)
- log_φ: ℝ⁺ → ℝ (φ-base logarithm)
- J: S × S → ℝ (entropy current)
- Relations: <, =, ∈, →, ≺
- Logical: ∧, ∨, ¬, →, ↔, ∀, ∃, ∃!
Axiom Schema
A1 (Self-Referential Entropy Increase) [from A1]:
∀S: SelfRefComplete(S) → H_φ(S_{t+1}) > H_φ(S_t)
A2 (No-11 Constraint) [Universal]:
∀h ∈ {0,1}*: Valid(h) ↔ ¬∃i: h[i] = 1 ∧ h[i+1] = 1
A3 (Zeckendorf Uniqueness):
∀n ∈ ℕ: ∃!h ∈ {0,1}*: n = Σᵢ h_i·F_i ∧ Valid(h)
A4 (Entropy Quantization):
∀H ∈ ℝ⁺: H_φ = ⌊H/ε_φ⌋ ∈ ℕ
Core Definitions
Definition D1 (φ-Entropy):
H_φ: S → ℕ
H_φ(S) := Σᵢ h_i·F_i
where Z(H_φ(S)) = h₁h₂...h_k ∧ Valid(h₁h₂...h_k)
Definition D2 (Shannon Entropy):
H_S: P → ℝ⁺
H_S(p₁,...,p_n) := -Σᵢ p_i·log₂(p_i)
where Σᵢ p_i = 1 ∧ ∀i: 0 ≤ p_i ≤ 1
Definition D3 (φ-Logarithm):
log_φ: ℝ⁺ → ℝ
log_φ(x) := ln(x)/ln(φ)
Definition D4 (Entropy Current):
J_H: S × S → ℝ
J_H(S₁, S₂) := [H_φ(S₂) - H_φ(S₁)]/τ₀
Theorems
Theorem T1 (Shannon-φ Conversion):
∀p ∈ P: H_φ(p) = ⌊H_S(p) · log₂(φ) · φ^k⌋
where k = min{j ∈ ℕ | H_S(p) · log₂(φ) · φ^j ∈ ℕ}
Theorem T2 (Fibonacci Growth):
∀S: H_φ(S_t) = Σᵢ h_i·F_i →
H_φ(S_{t+1}) ∈ {H_φ(S_t) + F_k | h_k = 0 ∧ h_{k-1} = 0 ∧ h_{k+1} = 0}
Theorem T3 (Maximum φ-Entropy):
∀n ∈ ℕ: H_φ_max(n) = ⌊log_φ(φ^{n+1}/√5)⌋
Theorem T4 (Entropy Conservation):
∀{S_i}: Σᵢ J_H(S_i, S_{i+1}) + Σ_source = dH_total/dt
where Σ_source = φ · |{self-reference operations}|
Derivation Rules
Rule R1 (Entropy Monotonicity):
H_φ(S₁) < H_φ(S₂) ∧ Valid(Z(H_φ(S₁))) ∧ Valid(Z(H_φ(S₂)))
───────────────────────────────────────────────────────────
∃F_k: H_φ(S₂) - H_φ(S₁) ≥ F_k
Rule R2 (No-11 Preservation):
Valid(Z(H_φ(S))) ∧ H_φ(S') = H_φ(S) + F_k
─────────────────────────────────────────
Valid(Z(H_φ(S'))) ↔ (h_k = 0 ∧ h_{k±1} = 0)
Rule R3 (Quantization):
H ∈ ℝ⁺
──────────────────
∃n ∈ ℕ: n = ⌊H/ε_φ⌋ ∧ Z(n) exists
Proof Theory
Metatheorem M1 (Soundness): All derivable formulas preserve No-11 constraint.
Proof:
- Base axioms enforce No-11
- Derivation rules maintain validity
- By induction: all theorems preserve constraint ∎
Metatheorem M2 (Completeness): Every valid entropy transition is derivable.
Proof:
- Zeckendorf theorem ensures unique representation
- Fibonacci growth covers all valid transitions
- Rules R1-R3 generate all allowed changes
- Therefore system is complete for φ-entropy ∎
Binary Encoding
Encoding E1 (T0-17 Binary):
T0-17 → 10001₂ = F₁ + F₇ = 1 + 13 = 14 (Fibonacci)
↓
Entropy boundaries
Verification:
- No consecutive 1s: 10001 ✓
- Encodes entropy at system boundaries
- Inherits from T0-16: 10000 (information flow)
Consistency Verification
Consistency C1 (With T0-0): Time emergence compatible with entropy quantization.
Consistency C2 (With T0-16): Energy-information duality preserved in entropy representation.
Consistency C3 (With A1): Self-referential completeness ensures entropy increase through valid Zeckendorf paths.