Proof of implication:
Given SelfRefComplete(S) and Distinguishable(x):
1. By D1-1, ∃Desc : S → L with properties:
- Completeness: ∀s ∈ S . Desc(s) ∈ L
- Injectivity: s₁ ≠ s₂ → Desc(s₁) ≠ Desc(s₂)
2. Since x ∈ S:
Desc(x) ∈ L (by completeness)
3. Since Distinguishable(x), ∃y ≠ x:
Desc(x) ≠ Desc(y) (by injectivity)
4. Therefore Describable(x) with d = Desc(x) ∎
Proof by construction:
Given Describable(x), so Desc(x) ∈ L:
1. L consists of finite symbol sequences
2. Construct standard encoding Encode : L → ℕ
Gödel encoding example:
- Assign primes to alphabet symbols: σᵢ ↦ pᵢ
- For string s₁s₂...sₙ:
Encode(s₁s₂...sₙ) = p₁^(a₁) × p₂^(a₂) × ... × pₙ^(aₙ)
where aᵢ is index of symbol sᵢ
3. This gives injective map L → ℕ
4. Compose with number encoding: ℕ → Σ*
5. E = NumberEncode ∘ Encode ∘ Desc
Therefore x is encodable ∎
ContinuousObjectFiniteRepresentation : Prop ≡
∀c ∈ ContinuousObjects .
∃f ∈ FiniteDescriptions . Represents(f, c)
where
ContinuousObjects = {π, e, sin, ...}
Represents(f, c) ≡ f generates/defines c
Proof of chain:
1. Info(x) → Distinguishable(x)
By definition of Info
2. Distinguishable(x) → Describable(x)
By Lemma T2-2.1
3. Describable(x) → Encodable(x)
By Lemma T2-2.2
Therefore Info(x) → Encodable(x) ∎
Proof of completeness:
Given SelfRefComplete(S) and x ∈ S with Info(x):
1. Apply encoding chain (Lemma T2-2.4):
Info(x) → Encodable(x)
2. By definition of Encodable:
∃e ∈ Σ* . E(x) = e
Therefore all information can be encoded ∎
def verify_formal_information_definition(system):
# 获取所有元素
elements = list(system.get_all_elements())
information_elements = []
for x in elements:
# 检查是否满足Info(x)
has_info = False
for y in elements:
if x != y:
desc_x = system.describe(x)
desc_y = system.describe(y)
if desc_x != desc_y:
has_info = True
break
if has_info:
information_elements.append(x)
# 验证至少有一些信息元素
assert len(information_elements) > 0
return True, information_elements
def verify_distinguishability_implies_describability(system):
elements = system.get_all_elements()
for x in elements:
# 检查可区分性
is_distinguishable = False
for y in elements:
if x != y:
is_distinguishable = True
break
if is_distinguishable:
# 验证可描述性
description = system.describe(x)
assert description is not None
assert isinstance(description, str)
assert len(description) > 0
return True
def verify_describability_implies_encodability(system, encoder):
elements = system.get_all_elements()
for x in elements:
# 获取描述
description = system.describe(x)
if description:
# 验证可编码
encoding = encoder.encode_description(description)
assert encoding is not None
assert isinstance(encoding, str)
assert len(encoding) < float('inf')
# 验证编码的单射性
for y in elements:
if x != y:
desc_y = system.describe(y)
if desc_y:
enc_y = encoder.encode_description(desc_y)
assert encoding != enc_y
return True