Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

T0-6: System Component Interaction Theory - Formal Specification

Formal System Definition

Language L₆

  • Constants: 0, 1, F₁, F₂, F₃, ...
  • Variables: C₁, C₂, ..., Cₙ (components)
  • Functions: κ: C × C → [0,1], τ: C × C → ℕ, Φ: C × C × T → Z
  • Relations: ↔ (interaction), → (information flow), ≤ (capacity ordering)
  • Operators: ⊕ (composition), ⊗ (coupling), ∇ (gradient)

Axioms

A6.1 (Inherited from T0-5):

∀S closed: ∑ᵢ Eᵢ(t) + ∑_{flows} = ∑ᵢ Eᵢ(0) + ∫₀ᵗ Γ(τ)dτ

A6.2 (Coupling Symmetry):

∀i,j: κᵢⱼ = κⱼᵢ

A6.3 (Coupling Bounds):

∀i,j: 0 ≤ κᵢⱼ ≤ 1

A6.4 (Information Quantization):

∀ information z: z ∈ {0, F₁, F₂, F₃, ...}

Core Definitions

D6.1: Interaction Channel

𝒾ᵢⱼ ≡ (Cᵢ ↔ Cⱼ, κᵢⱼ, τᵢⱼ)
where:
- Cᵢ, Cⱼ ∈ Components
- κᵢⱼ ∈ [0,1]
- τᵢⱼ ∈ ℕ

D6.2: Information Packet

Pᵢⱼ(t) ≡ (z, ε, φ)
where:
- z ∈ Zeckendorf
- ε ≥ 0
- φ ∈ {i→j, j→i}

D6.3: Coupling Strength

κᵢⱼ ≡ min(Fₖᵢ, Fₖⱼ) / max(Fₖᵢ, Fₖⱼ)

D6.4: System State Vector

σ(t) ≡ (E₁(t), E₂(t), ..., Eₙ(t))
where ∀i: 0 ≤ Eᵢ(t) ≤ Fₖᵢ - 1

Fundamental Theorems

T6.1: Safe Exchange Condition

Safe(Cᵢ → Cⱼ, z) ⟺ 
  (NoConsecutiveOnes(sᵢ - z) ∧ 
   NoConsecutiveOnes(sⱼ + z) ∧
   z ≤ κᵢⱼ × min(Fₖᵢ, Fₖⱼ))

Proof Structure:

  1. Define pre-states: sᵢ, sⱼ in Zeckendorf form
  2. Apply exchange operation
  3. Verify no-11 preservation
  4. Check capacity constraints
  5. Confirm entropy balance

T6.2: Bandwidth Theorem

Bᵢⱼ = (κᵢⱼ × min(Fₖᵢ, Fₖⱼ)) / τᵢⱼ

Proof Structure:

  1. Maximum transfer per unit time = min(Fₖᵢ, Fₖⱼ)
  2. Effective transfer = κᵢⱼ × maximum
  3. Rate = effective / delay

T6.3: Transmission Loss

ΔS_loss = z × (1 - κᵢⱼ) × log₂(τᵢⱼ + 1)

Proof Structure:

  1. Coupling imperfection: (1 - κᵢⱼ)
  2. Temporal degradation: log₂(τᵢⱼ + 1)
  3. Combined loss proportional to z

T6.4: Error Propagation Bound

ε_max = F_⌊log_φ(z)⌋ × (1 - κᵢⱼ)
where φ = (1+√5)/2

Proof Structure:

  1. Decompose z in Zeckendorf
  2. Identify largest Fibonacci term
  3. Apply coupling error factor

Coupling Dynamics

T6.5: Dynamic Coupling Evolution

κᵢⱼ(t+1) = κᵢⱼ(t) + α × (Φᵢⱼ(t)/F_min) × (1 - κᵢⱼ(t))
where α ∈ (0,1)

Proof Structure:

  1. Reinforcement from successful flows
  2. Saturation at κᵢⱼ = 1
  3. Fibonacci normalization

T6.6: Optimal Coupling

κᵢⱼ* = √((Fₖᵢ × Fₖⱼ)/(Fₖᵢ + Fₖⱼ)²)

Proof Structure:

  1. Define loss function L = ∑ᵢⱼ ΔS_loss(κᵢⱼ)
  2. Compute ∂L/∂κᵢⱼ = 0
  3. Verify minimum condition

Network Properties

T6.7: Network Stability

Stable(G) ⟺ λ_max(𝐊) < 1
where 𝐊 = [κᵢⱼ]ₙₓₙ

Proof Structure:

  1. System dynamics: s(t+1) = 𝐊·s(t) + Γ(t)
  2. Stability requires bounded growth
  3. Spectral radius condition

T6.8: Broadcast Conservation

Broadcast(Cᵢ → {Cⱼ}, z):
  Eᵢ^after = Eᵢ^before - z
  ∑ⱼ≠ᵢ Eⱼ^after = ∑ⱼ≠ᵢ Eⱼ^before + z - ε_broadcast

Proof Structure:

  1. Sender depletion
  2. Receiver accumulation
  3. Overhead accounting

Synchronization

T6.9: Critical Coupling for Synchronization

Sync(Cᵢ, Cⱼ) ⟺ κᵢⱼ > |Fₖᵢ - Fₖⱼ|/(Fₖᵢ + Fₖⱼ)

Proof Structure:

  1. Phase dynamics in Zeckendorf space
  2. Kuramoto-like equations
  3. Critical threshold derivation

T6.10: Collective Mode Frequencies

f_m = F_m / ∑ᵢ Fₖᵢ for m ∈ ℕ

Proof Structure:

  1. Define collective entropy
  2. Fourier decomposition
  3. Fibonacci frequency spacing

Information Integrity

T6.11: Consistency Condition

Consistent({Cᵢ}) ⟺ ∀i,j: H(zᵢ | zⱼ) = 0

Proof Structure:

  1. Define conditional entropy
  2. Zero condition implies determinism
  3. Protocol requirements

T6.12: Recovery Redundancy

Recoverable(z, n) ⟺ redundancy ≥ ⌈log_φ(n)⌉

Proof Structure:

  1. Information distribution strategy
  2. Recovery threshold analysis
  3. Fibonacci optimal encoding

Optimization

T6.13: Optimal Load Distribution

Eᵢ* = Fₖᵢ × (E_total / ∑ⱼ Fₖⱼ)

Proof Structure:

  1. Proportional to capacity
  2. Entropy minimization
  3. Natural equilibrium

T6.14: Minimum Loss Routing

Path* = argmin_p ∑_{(i,j)∈p} (1/κᵢⱼ) × τᵢⱼ

Proof Structure:

  1. Path loss function
  2. Graph optimization
  3. Dijkstra variant

Safety Properties

T6.15: Deadlock Freedom

DeadlockFree(S) ⟺ ∃i: Eᵢ < Fₖᵢ/2

Proof Structure:

  1. Deadlock characterization
  2. Half-capacity invariant
  3. Progress guarantee

T6.16: Livelock Prevention

LivelockFree(S) ⟺ priority_i = Fₖᵢ × (1 - Eᵢ/Fₖᵢ) forms strict order

Proof Structure:

  1. Priority function definition
  2. Ordering prevents cycles
  3. Progress guarantee

Security

T6.17: Isolation Guarantee

κᵢⱼ = 0 ⟹ I(Cᵢ; Cⱼ) = 0

Proof Structure:

  1. Zero coupling blocks flow
  2. Mutual information vanishes
  3. Complete isolation

T6.18: Leakage Bound

I_leak ≤ ∑ⱼ κᵢⱼ × log₂(Fₖⱼ)

Proof Structure:

  1. Per-channel leakage
  2. Sum over channels
  3. Controllable through coupling

Composition

T6.19: Compositional Safety

S = S₁ ⊕ S₂ ⟹ λ_max(𝐊_S) ≤ max(λ_max(𝐊_{S₁}), λ_max(𝐊_{S₂}))

Proof Structure:

  1. Block matrix structure
  2. Spectral bound preservation
  3. Safety inheritance

T6.20: Scalability

Overhead(n) = O(log_φ(n))

Proof Structure:

  1. Fibonacci addressing
  2. Routing path length
  3. Logarithmic growth

Completeness

Metatheorem: Theory Completeness

T0-6 is complete for component interaction:
1. All safe exchanges characterized (T6.1)
2. All transmission properties bounded (T6.2-T6.4)
3. All coupling dynamics specified (T6.5-T6.6)
4. All network behaviors determined (T6.7-T6.10)
5. All safety properties guaranteed (T6.15-T6.18)

Consistency

Consistency with Prior Theory

T0-6 ∧ T0-5 ∧ T0-4 ∧ T0-3 ∧ T0-2 ∧ T0-1 is consistent:
- Preserves entropy conservation (T0-5)
- Maintains Zeckendorf encoding (T0-4)
- Respects no-11 constraint (T0-3)
- Uses Fibonacci capacities (T0-2)
- Operates in binary universe (T0-1)

Central Result

Master Equation for Component Interaction

ΔIᵢⱼ = κᵢⱼ × min(Fₖᵢ, Fₖⱼ) × (1 - ΔS_loss/z)

This equation fully characterizes information transfer between components, incorporating:

  • Coupling strength (κᵢⱼ)
  • Capacity constraints (min function)
  • Entropy loss factor (1 - ΔS_loss/z)

The theory provides a complete, minimal framework for safe component interaction in self-referential systems with Fibonacci-quantized capacities and Zeckendorf encoding.