Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

T0-11 Formal: Recursive Depth and Hierarchy Theory

Formal System Specification

Language L₁₁

  • Constants: 0, 1, φ = (1+√5)/2, τ₀
  • Variables: d, s, L_k, F_k
  • Functions:
    • f: S → S (self-reference)
    • Z: ℕ → {0,1}* (Zeckendorf encoding)
    • D: S → ℕ (depth function)
    • H: ℕ → ℝ⁺ (entropy)
    • C: ℕ → ℕ (complexity)
  • Relations: <, =, ∈, →, ≺
  • Logical: ∧, ∨, ¬, →, ↔, ∀, ∃, ∃!

Axiom Schema

A1 (Self-Referential Completeness) [from A1]:

∀S: SelfRefComplete(S) → H(S_{t+1}) > H(S_t)

A2 (No-11 Constraint) [from T0-0]:

∀b ∈ {0,1}*: Valid(b) ↔ ¬∃i: b[i] = 1 ∧ b[i+1] = 1

A3 (Discrete Time) [from T0-0]:

∀t: t ∈ ℕ ∧ (s_t → s_{t+1} ⟹ Δt = τ₀)

Core Definitions

Definition D1 (Recursive Depth):

D: S → ℕ
D(s) := min{n ∈ ℕ | f^n(s₀) = s}
where f^n = f ∘ f ∘ ... ∘ f (n compositions)

Definition D2 (Zeckendorf Depth Encoding):

Z_D: ℕ → {0,1}*
Z_D(n) = b₁b₂...b_k where n = Σᵢ bᵢFᵢ
Subject to: ∀i: bᵢ · bᵢ₊₁ = 0

Definition D3 (Hierarchy Level):

L_k := {s ∈ S | F_k ≤ D(s) < F_{k+1}}
where F_k is k-th Fibonacci number

Definition D4 (Level Transition):

T_{k→k+1}: L_k → L_{k+1}
T_{k→k+1}(s) := f^m(s) where m = F_{k+1} - D(s)

Definition D5 (Depth Complexity):

C: ℕ → ℕ
C(d) := |{s ∈ S | D(s) = d ∧ Valid(Z(s))}| = F_d

Definition D6 (Depth Entropy):

H: ℕ → ℝ⁺
H(d) := log C(d) = log F_d

Main Theorems

Theorem T0-11.1 (Depth Quantization):

∀d: D(s) ∈ ℕ (no d ∈ ℝ \ ℕ possible)

Proof:
1. Assume ∃d ∈ ℝ \ ℕ: D(s) = d
2. Then ∃n ∈ ℕ: n < d < n+1
3. Z_D(d) requires interpolation between Z_D(n) and Z_D(n+1)
4. Binary interpolation → fractional bits
5. Contradiction with b ∈ {0,1}
6. Alternative: probabilistic superposition
7. But superposition of "01" and "10" could yield "11"
8. Violates A2 (No-11 constraint)
∴ D(s) ∈ ℕ only

Theorem T0-11.2 (Natural Level Formation):

∀k ∈ ℕ: |L_k| = F_{k+1} - F_k = F_{k-1}

Proof:
1. L_k = {s | F_k ≤ D(s) < F_{k+1}}
2. Number of depths in range = F_{k+1} - F_k
3. By Fibonacci recurrence: F_{k+1} = F_k + F_{k-1}
4. Therefore: F_{k+1} - F_k = F_{k-1}
5. Each depth d has F_d states (by D5)
∴ Level size follows Fibonacci sequence

Theorem T0-11.3 (Irreversible Transitions):

∀k: T_{k→k+1} exists ∧ ¬∃T_{k+1→k}

Proof:
1. H(L_k) = log(F_{k+1} - F_k) = log F_{k-1}
2. H(L_{k+1}) = log F_k
3. Since F_k > F_{k-1} for k > 2
4. H(L_{k+1}) > H(L_k)
5. By A1: transitions must increase entropy
6. T_{k+1→k} would require H decrease
∴ Only upward transitions possible

Theorem T0-11.4 (Exponential Complexity):

∀d large: C(d) ≈ φ^d/√5

Proof:
1. C(d) = F_d by D5
2. Binet's formula: F_n = (φ^n - ψ^n)/√5
3. Where ψ = (1-√5)/2 ≈ -0.618
4. For large n: |ψ^n| → 0
5. Therefore: F_n ≈ φ^n/√5
∴ C(d) grows exponentially as φ^d

Theorem T0-11.5 (Constant Entropy Rate):

∀d large: dH/dd → log φ

Proof:
1. H(d) = log C(d) = log F_d
2. For large d: F_d ≈ φ^d/√5
3. H(d) ≈ d·log φ - log √5
4. dH/dd = ∂(d·log φ - log √5)/∂d
5. dH/dd = log φ
∴ Entropy increases at constant rate log φ per recursion

Theorem T0-11.6 (Phase Transitions):

∀n ∈ ℕ: System undergoes phase transition at d = ⌊φ^n⌋

Proof:
1. At depth d = φ^n: C(φ^n) = F_{φ^n}
2. Using approximation: F_{φ^n} ≈ φ^{φ^n}/√5
3. This represents super-exponential growth point
4. log C(φ^n) ≈ φ^n · log φ
5. Derivative: d(log C)/dd|_{d=φ^n} has discontinuity
6. Discontinuous derivative → phase transition
∴ Phase transitions occur at φ^n depths

Theorem T0-11.7 (Information Flow Convergence):

lim_{k→∞} I_{up}(k) = log φ
where I_{up}(k) = H(L_{k+1}) - H(L_k)

Proof:
1. I_{up}(k) = log F_k - log F_{k-1}
2. I_{up}(k) = log(F_k/F_{k-1})
3. By Fibonacci property: lim_{k→∞} F_k/F_{k-1} = φ
4. Therefore: lim_{k→∞} I_{up}(k) = log φ
∴ Information flow stabilizes at golden ratio

Theorem T0-11.8 (Maximum Depth):

∀S finite: ∃d_max: ∀s ∈ S: D(s) ≤ d_max
where d_max = ⌊log_φ(|S| · √5)⌋

Proof:
1. Total states available: |S| = N
2. States at depth d: C(d) = F_d
3. Constraint: Σ_{i=0}^{d_max} F_i ≤ N
4. Sum of Fibonacci: Σ_{i=0}^n F_i = F_{n+2} - 1
5. Require: F_{d_max+2} ≤ N + 1
6. Using Binet: φ^{d_max+2}/√5 ≈ N
7. Solving: d_max ≈ log_φ(N·√5) - 2
∴ Finite systems have maximum recursive depth

Derived Propositions

Proposition P1 (Depth-Time Equivalence):

∀s: t(s) = D(s) · τ₀

Proposition P2 (Level Size Ratio):

∀k large: |L_{k+1}|/|L_k| → φ

Proposition P3 (Entropy Jump at Transition):

∀k: ΔH(F_k) = log φ

Consistency Requirements

C1 (Depth Uniqueness):

∀s ∈ S: ∃!d ∈ ℕ: D(s) = d

C2 (Level Partition):

∀k ≠ j: L_k ∩ L_j = ∅ ∧ ∪_k L_k = S

C3 (Monotonic Entropy):

∀d₁ < d₂: H(d₁) < H(d₂)

Formal Verification Conditions

V1 (Zeckendorf Validity):

∀d ∈ ℕ: Valid(Z_D(d)) ↔ No-11(Z_D(d))

V2 (Fibonacci Boundary):

∀k: s ∈ L_k ↔ F_k ≤ D(s) < F_{k+1}

V3 (Transition Existence):

∀s ∈ L_k: ∃s' ∈ L_{k+1}: s' = T_{k→k+1}(s)

V4 (Entropy Monotonicity):

∀d: H(d+1) - H(d) > 0

Machine-Verifiable Properties

MV1 (Computable Depth):

Algorithm DEPTH(s, s₀):
  d ← 0
  current ← s₀
  WHILE current ≠ s:
    current ← f(current)
    d ← d + 1
    ASSERT Valid(Z(current))
  RETURN d
Time: O(d), Space: O(1)

MV2 (Level Detection):

Algorithm LEVEL(d):
  k ← 1
  WHILE F_k ≤ d:
    k ← k + 1
  RETURN k - 1
Time: O(log d), Space: O(1)

MV3 (Entropy Calculation):

Algorithm ENTROPY(d):
  RETURN log(F_d)
Time: O(d), Space: O(d) for F_d calculation

Completeness Statement

The formal system (L₁₁, {A1, A2, A3}, {D1-D6}, {T0-11.1 through T0-11.8}) is:

  1. Consistent: No theorem contradicts axioms or other theorems
  2. Complete for Recursion: Describes all recursive depth phenomena
  3. Decidable for Finite Systems: All properties computable for finite S
  4. Machine-Verifiable: All theorems have algorithmic verification

Connection to Meta-Theory

This formal system provides:

  • Foundation for T11: Phase transitions at level boundaries
  • Basis for Complexity Theory: Depth as complexity measure
  • Link to Computation: Recursion depth = computational steps
  • Bridge to Quantum: Discrete levels → quantum states