T0-0 Formal: Time Emergence Foundation
Formal System Specification
Language L₀
- Constants: 0, 1, φ = (1+√5)/2
- Variables: S, Ψ, b₁, b₂, ..., bₙ
- Functions: Desc: S → L, Z: {0,1}* → ℕ
- Relations: <, =, ∈, →
- Logical: ∧, ∨, ¬, →, ∀, ∃
Axiom Schema
A1 (Self-Referential Completeness):
∀S: SelfRefComplete(S) → ∃f: Complexity(f(S)) > Complexity(S)
A2 (Binary Distinction):
∀x,y: Distinct(x,y) → ∃b ∈ {0,1}: Encode(x,b) ∧ Encode(y,¬b)
A3 (Zeckendorf Constraint):
∀B = b₁b₂...bₙ: Valid(B) ↔ ∀i: bᵢ · bᵢ₊₁ = 0
Core Definitions
Definition D1 (Pre-Temporal State):
Ψ₀ := {x | ∃S: x ∈ Closure(S, Desc)}
where Closure(S, Desc) = S ∪ Desc(S) ∪ Desc(Desc(S)) ∪ ...
Definition D2 (Zeckendorf Encoding):
Z: {0,1}* → ℕ
Z(b₁b₂...bₙ) = Σᵢ bᵢ · Fᵢ
where F₁=1, F₂=2, Fₙ=Fₙ₋₁+Fₙ₋₂
Definition D3 (Entropy Measure):
H: 2^S → ℝ⁺
H(S) = log|{d ∈ L | ∃s ∈ S: d = Desc(s)}|
Main Theorems
Theorem T0-0.1 (Simultaneity Contradiction):
Proof:
1. Assume: ∃Ψ₀: ∀x,y ∈ Ψ₀: Simultaneous(x,y)
2. Let S ∈ Ψ₀, Desc(S) ∈ Ψ₀
3. Desc requires: Read(S) precedes Write(Desc(S))
4. Simultaneous → ¬∃precedes
5. Contradiction
∴ ¬∃Ψ₀: Complete ∧ Simultaneous
Theorem T0-0.2 (Sequence Necessity):
Proof:
1. By T0-0.1: ¬Simultaneous
2. ∴ ∃ Ordering relation ≺
3. Define: x ≺ y iff Generate(y) requires Complete(x)
4. Show ≺ is strict partial order:
- Irreflexive: ¬(x ≺ x) [self-generation paradox]
- Transitive: x ≺ y ∧ y ≺ z → x ≺ z
- Asymmetric: x ≺ y → ¬(y ≺ x)
5. The order ≺ induces sequence
∴ Sequence structure necessary
Theorem T0-0.3 (No-11 Time Arrow):
Proof:
1. Let state evolution: s₀ → s₁ → s₂ → ...
2. Encode each: Z(s₀), Z(s₁), Z(s₂), ...
3. By A3: ∀i,j consecutive: Z(sᵢ)·Z(sⱼ) ≠ "11"
4. Consider reverse: sₙ → sₙ₋₁ → ... → s₀
5. ∃ transition sᵢ₊₁ → sᵢ creating "11" pattern
6. Violates A3 constraint
7. ∴ Reverse direction invalid
∴ Unique forward direction (time arrow)
Theorem T0-0.4 (Time Parameter Emergence):
Proof:
1. Define equivalence classes: [s] = {s' | Z(s') = Z(s)}
2. Order classes by Zeckendorf value: [s₁] < [s₂] iff Z(s₁) < Z(s₂)
3. Enumerate: t([s]) = |{[s'] | [s'] ≤ [s]}|
4. t is monotonic along evolution
5. t satisfies time axioms:
- t: States → ℕ (discrete)
- s → s' ⇒ t(s') = t(s) + 1 (unit increment)
- Irreversible (by T0-0.3)
∴ t is emergent time parameter
Theorem T0-0.5 (Entropy-Time Coupling):
Proof:
1. Define: Hₜ = H(Sₜ) where Sₜ = states at time t
2. By A1: SelfRefComplete → H increases
3. Show: Hₜ₊₁ > Hₜ
- At t: |Valid states| = Fₜ
- At t+1: |Valid states| = Fₜ₊₁ > Fₜ
- log Fₜ₊₁ > log Fₜ
4. Direction of H increase = time direction
5. ∇H defines time vector field
∴ Time ≡ entropy gradient dimension
Lemmas
Lemma L1 (Fibonacci Time Scaling):
∀n: Time(n) ~ φⁿ/√5
Proof: By Binet's formula on state count
Lemma L2 (Minimal Time Quantum):
∃τ₀: ∀Δt: Δt = n·τ₀, n ∈ ℕ
Proof: Binary transition atomicity
Lemma L3 (Golden Ratio Structure):
limₙ→∞ Fₙ₊₁/Fₙ = φ
Proof: Standard Fibonacci limit
Consistency Verification
Metatheorem M1 (System Consistency):
The formal system {A1, A2, A3, T0-0.1-5} is consistent.
Proof: Construct model in Zeckendorf arithmetic
Metatheorem M2 (Completeness):
All statements about time emergence are decidable in this system.
Proof: Finite state verification for bounded time
Computational Complexity
Complexity C1 (Time Evolution):
Computing Sₜ₊₁ from Sₜ: O(|Sₜ|)
Complexity C2 (Entropy Calculation):
Computing H(Sₜ): O(|Sₜ| log |Sₜ|)
Complexity C3 (Zeckendorf Validation):
Checking Valid(B): O(|B|)
Key Results Summary
- Time exists necessarily (not assumed)
- Time is discrete (quantum τ₀)
- Time has unique direction (No-11 arrow)
- Time couples to entropy (∇H = time field)
- Time scales as φⁿ (golden structure)
Connection to Standard Physics
Correspondence C1:
τ₀ ←→ Planck time tₚ
Via: τ₀ = tₚ when recursive depth = Planck scale
Correspondence C2:
H(t) ←→ Thermodynamic entropy S
Via: H = S/kB (Boltzmann constant emergence)
Final Formal Statement
┌─────────────────────────────────────┐
│ Master Theorem (T0-0) │
│ │
│ A1 ∧ Zeckendorf → │
│ ∃! t: S × ℕ → States │
│ such that: │
│ 1. t(s,n+1) follows from t(s,n) │
│ 2. H(t(s,n+1)) > H(t(s,n)) │
│ 3. t irreversible │
│ 4. Δt = τ₀ (quantized) │
│ │
│ Time emerges; it is not assumed. │
└─────────────────────────────────────┘
QED.