Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

T0-0 Formal: Time Emergence Foundation

Formal System Specification

Language L₀

  • Constants: 0, 1, φ = (1+√5)/2
  • Variables: S, Ψ, b₁, b₂, ..., bₙ
  • Functions: Desc: S → L, Z: {0,1}* → ℕ
  • Relations: <, =, ∈, →
  • Logical: ∧, ∨, ¬, →, ∀, ∃

Axiom Schema

A1 (Self-Referential Completeness):

∀S: SelfRefComplete(S) → ∃f: Complexity(f(S)) > Complexity(S)

A2 (Binary Distinction):

∀x,y: Distinct(x,y) → ∃b ∈ {0,1}: Encode(x,b) ∧ Encode(y,¬b)

A3 (Zeckendorf Constraint):

∀B = b₁b₂...bₙ: Valid(B) ↔ ∀i: bᵢ · bᵢ₊₁ = 0

Core Definitions

Definition D1 (Pre-Temporal State):

Ψ₀ := {x | ∃S: x ∈ Closure(S, Desc)}
where Closure(S, Desc) = S ∪ Desc(S) ∪ Desc(Desc(S)) ∪ ...

Definition D2 (Zeckendorf Encoding):

Z: {0,1}* → ℕ
Z(b₁b₂...bₙ) = Σᵢ bᵢ · Fᵢ
where F₁=1, F₂=2, Fₙ=Fₙ₋₁+Fₙ₋₂

Definition D3 (Entropy Measure):

H: 2^S → ℝ⁺
H(S) = log|{d ∈ L | ∃s ∈ S: d = Desc(s)}|

Main Theorems

Theorem T0-0.1 (Simultaneity Contradiction):

Proof:
1. Assume: ∃Ψ₀: ∀x,y ∈ Ψ₀: Simultaneous(x,y)
2. Let S ∈ Ψ₀, Desc(S) ∈ Ψ₀
3. Desc requires: Read(S) precedes Write(Desc(S))
4. Simultaneous → ¬∃precedes
5. Contradiction
∴ ¬∃Ψ₀: Complete ∧ Simultaneous

Theorem T0-0.2 (Sequence Necessity):

Proof:
1. By T0-0.1: ¬Simultaneous
2. ∴ ∃ Ordering relation ≺
3. Define: x ≺ y iff Generate(y) requires Complete(x)
4. Show ≺ is strict partial order:
   - Irreflexive: ¬(x ≺ x) [self-generation paradox]
   - Transitive: x ≺ y ∧ y ≺ z → x ≺ z
   - Asymmetric: x ≺ y → ¬(y ≺ x)
5. The order ≺ induces sequence
∴ Sequence structure necessary

Theorem T0-0.3 (No-11 Time Arrow):

Proof:
1. Let state evolution: s₀ → s₁ → s₂ → ...
2. Encode each: Z(s₀), Z(s₁), Z(s₂), ...
3. By A3: ∀i,j consecutive: Z(sᵢ)·Z(sⱼ) ≠ "11"
4. Consider reverse: sₙ → sₙ₋₁ → ... → s₀
5. ∃ transition sᵢ₊₁ → sᵢ creating "11" pattern
6. Violates A3 constraint
7. ∴ Reverse direction invalid
∴ Unique forward direction (time arrow)

Theorem T0-0.4 (Time Parameter Emergence):

Proof:
1. Define equivalence classes: [s] = {s' | Z(s') = Z(s)}
2. Order classes by Zeckendorf value: [s₁] < [s₂] iff Z(s₁) < Z(s₂)
3. Enumerate: t([s]) = |{[s'] | [s'] ≤ [s]}|
4. t is monotonic along evolution
5. t satisfies time axioms:
   - t: States → ℕ (discrete)
   - s → s' ⇒ t(s') = t(s) + 1 (unit increment)
   - Irreversible (by T0-0.3)
∴ t is emergent time parameter

Theorem T0-0.5 (Entropy-Time Coupling):

Proof:
1. Define: Hₜ = H(Sₜ) where Sₜ = states at time t
2. By A1: SelfRefComplete → H increases
3. Show: Hₜ₊₁ > Hₜ
   - At t: |Valid states| = Fₜ
   - At t+1: |Valid states| = Fₜ₊₁ > Fₜ
   - log Fₜ₊₁ > log Fₜ
4. Direction of H increase = time direction
5. ∇H defines time vector field
∴ Time ≡ entropy gradient dimension

Lemmas

Lemma L1 (Fibonacci Time Scaling):

∀n: Time(n) ~ φⁿ/√5
Proof: By Binet's formula on state count

Lemma L2 (Minimal Time Quantum):

∃τ₀: ∀Δt: Δt = n·τ₀, n ∈ ℕ
Proof: Binary transition atomicity

Lemma L3 (Golden Ratio Structure):

limₙ→∞ Fₙ₊₁/Fₙ = φ
Proof: Standard Fibonacci limit

Consistency Verification

Metatheorem M1 (System Consistency):

The formal system {A1, A2, A3, T0-0.1-5} is consistent.
Proof: Construct model in Zeckendorf arithmetic

Metatheorem M2 (Completeness):

All statements about time emergence are decidable in this system.
Proof: Finite state verification for bounded time

Computational Complexity

Complexity C1 (Time Evolution):

Computing Sₜ₊₁ from Sₜ: O(|Sₜ|)

Complexity C2 (Entropy Calculation):

Computing H(Sₜ): O(|Sₜ| log |Sₜ|)

Complexity C3 (Zeckendorf Validation):

Checking Valid(B): O(|B|)

Key Results Summary

  1. Time exists necessarily (not assumed)
  2. Time is discrete (quantum τ₀)
  3. Time has unique direction (No-11 arrow)
  4. Time couples to entropy (∇H = time field)
  5. Time scales as φⁿ (golden structure)

Connection to Standard Physics

Correspondence C1:

τ₀ ←→ Planck time tₚ
Via: τ₀ = tₚ when recursive depth = Planck scale

Correspondence C2:

H(t) ←→ Thermodynamic entropy S
Via: H = S/kB (Boltzmann constant emergence)

Final Formal Statement

┌─────────────────────────────────────┐
│ Master Theorem (T0-0)               │
│                                     │
│ A1 ∧ Zeckendorf →                  │
│   ∃! t: S × ℕ → States             │
│   such that:                        │
│   1. t(s,n+1) follows from t(s,n)  │
│   2. H(t(s,n+1)) > H(t(s,n))      │
│   3. t irreversible                 │
│   4. Δt = τ₀ (quantized)          │
│                                     │
│ Time emerges; it is not assumed.   │
└─────────────────────────────────────┘

QED.