BinaryPatterns2 : Set ≡ {00, 01, 10, 11}
SymmetricConstraints : Set ≡ {F : F = {00} ∨ F = {11}}
AsymmetricConstraints : Set ≡ {F : F = {01} ∨ F = {10}}
Proof of SymmetryNecessity:
1. Binary based on duality: 0 ≡ ¬1, 1 ≡ ¬0
2. Self-referential ψ = ψ(ψ) has intrinsic symmetry
3. Asymmetric constraint (e.g., forbid 01 but not 10):
- Breaks 0-1 equality
- Violates duality foundation
- Leads to inconsistency in self-description
Therefore: Only {00} or {11} preserve symmetry ∎
Proof:
1. Symmetry requirement → F ∈ {{00}, {11}}
2. Both have same capacity by 0-1 duality
3. Fibonacci recurrence → capacity = log(φ)
4. Other constraints:
- Either asymmetric (violate symmetry)
- Or have lower capacity
5. Therefore {11} (or {00}) is optimal ∎
PhysicalInterpretation : Type ≡
| Forbid_00 : "No consecutive empty states"
| Forbid_11 : "No consecutive full states"
| Forbid_01 : "No empty-to-full transition"
| Forbid_10 : "No full-to-empty transition"
MostNatural : PhysicalInterpretation ≡ Forbid_11
// Prevents "over-excitation" of system
def verify_symmetry_preservation(forbidden_pattern):
# 生成满足约束的串
valid_strings = generate_valid_strings(forbidden_pattern, max_length=8)
# 检查0-1翻转后是否仍满足约束
flipped_pattern = forbidden_pattern.translate(str.maketrans('01', '10'))
for s in valid_strings:
flipped_s = s.translate(str.maketrans('01', '10'))
if forbidden_pattern in flipped_s and flipped_pattern not in s:
return False
return True
def verify_fibonacci_structure(forbidden_pattern):
if forbidden_pattern not in ['00', '11']:
return False
# 计算前20个N(n)
N = [0, 2, 3] # N(0)未定义, N(1)=2, N(2)=3
for n in range(3, 20):
N.append(N[n-1] + N[n-2])
# 验证与Fibonacci的关系
# N(n) = F(n+2)
fib = [1, 1]
for i in range(2, 22):
fib.append(fib[i-1] + fib[i-2])
matches = all(N[i] == fib[i+1] for i in range(1, 20))
return matches