EncodingEmergence : Prop ≡
∀S : System .
SelfReferentialComplete(S) ∧
(∀t : Time . H(S_{t+1}) > H(S_t)) →
∃E : S → L . EncodingFunction(E)
where
L : Type // Formal language (finite symbol strings)
EncodingFunction(E) ≡ Injective(E) ∧ Finite(E) ∧ SelfEncoding(E)
FiniteDescriptionRequirement : Prop ≡
∀S : System .
SelfReferentialComplete(S) →
∀s ∈ S . |Desc(s)| < ∞
where
|·| : L → ℕ // Length function for descriptions
Proof of InformationEmergence:
Assume SelfReferentialComplete(S)
By D1-1, ∃Desc : S → L . Injective(Desc)
Since H(S_t) increases, |S| ≥ 2
Therefore ∃x,y ∈ S . x ≠ y
By injectivity, Desc(x) ≠ Desc(y)
Define Info(z) := ∃w . z ≠ w ∧ Desc(z) ≠ Desc(w)
Therefore InformationConcept(Info) holds ∎
Proof of FiniteDescriptionRequirement:
By D1-1, Desc : S → L where L is formal language
L = ⋃_{n=0}^∞ Σⁿ where Σ is finite alphabet
For any l ∈ L, ∃n < ∞ . l ∈ Σⁿ
Therefore |l| = n < ∞
Since Desc(s) ∈ L, |Desc(s)| < ∞ ∎
Proof of EncodingEmergence:
Assume SelfReferentialComplete(S) ∧ (∀t . H(S_{t+1}) > H(S_t))
1. By InformationAccumulation: |S_t| → ∞ as t → ∞
2. By FiniteDescriptionRequirement: ∀s ∈ S . |Desc(s)| < ∞
3. Contradiction: Infinite states vs finite descriptions
4. Resolution: Must exist systematic encoding E : S → L such that:
- Injective(E): Different states have different codes
- Finite(E): All codes have finite length
- SelfEncoding(E): E can encode itself
5. By self-referential completeness, E ∈ S
6. Therefore ∃E : S → L . EncodingFunction(E) ∎
ConstructiveEncoding : S → L ≡
λs . match s with
| s ∈ S₀ → base_encoding(s)
| s ∈ S_t \ S_{t-1} → recursive_encoding(s, t)
| s = E → self_encoding(E)
| _ → error
where
base_encoding : S₀ → L
recursive_encoding : S × Time → L
self_encoding : (S → L) → L
def verify_information_emergence(system):
if not is_self_referential_complete(system):
return False
return len(system.elements) >= 2 and has_distinct_descriptions(system)
def verify_information_accumulation(system_sequence):
for t in range(len(system_sequence) - 1):
if entropy(system_sequence[t+1]) <= entropy(system_sequence[t]):
return False
if len(system_sequence[t+1]) <= len(system_sequence[t]):
return False
return True
def verify_finite_description(system):
for element in system.elements:
desc = system.describe(element)
if not is_finite_string(desc):
return False
return True